A Methodology for Simulation Development on the Basis of Causeand-Effect Modeling in E-Commerce

<u>Axel Hummel¹</u>, Heiko Kern¹, René Keßler² and Arndt Döhler²

¹ Business Information Systems, University of Leipzig ² Intershop Communications AG

CSSim 2012 - Conference on Computer Modelling and Simulation September 3, 2012

Outline

- 1) Introduction
- 2) Requirements
- 3) Existing methodologies
- 4) The SimProgno methodology
- 5) Conclusion

Introduction

- Optimal configuration of an online shop is a challenging task
 - High number of configuration parameters
 - Interdependencies between these parameters
- Shop managers decide on basis of their expert knowledge
 - Subjective and non-transparent decisions
 - Effects are difficult to predict

Introduction

Our objective

 Development of a simulation framework for shop managers

– Solution

 Development of several simulation modules

- Integration of simulation modules to define complex e-commerce scenarios
- The structured development of the simulation modules requires a methodology
 - High quality of the developed artifacts
 - Definition of responsibilities

Requirements for the SimProgno methodology

1) Involvement of domain experts

• Have domain knowledge

2) Abstraction of certain simulation techniques

• Independent of a special simulation technique

3) Usage of established methods and tools

4) Integration of simulations

• Interdependencies between the simulation modules

Existing methodologies

General methodologies

• Simulation technique-independent but too general for our purpose

System Dynamics methodologies

- Mostly specific for System Dynamics modeling
- Causal loop diagrams as abstraction of System Dynamics modeling

Agent-oriented methodologies

- Specific for agent-oriented modeling
- Not designed for the simulation context

General weaknesses

- No guidelines for the explicit involvement of domain experts
- No guidelines for the integration of simulation models

- 10 process steps
- Mostly sequential order

Axel Hummel, University of Leipzig, CSSim 2012

Scenario selection

- Identification of a relevant e-commerce scenario
- Used approaches
 - Online survey
 - Studies published by market research companies
 - Interviews of domain experts

- Problem structuring and simulation requirements definition
 - Precise problem formulation
 - Is simulation a suitable tool?
 - Which questions should be answered by the simulation?
 - Workshop with domain expert

Data collection and data mining

- Parallel to the remaining process steps
- Necessary for model development, model calibration and model validation
- Data sources
 - Related projects of the domain experts
 - Real transaction data of online-shops
 - Surveys

Identification of system variables

- Expert workshops consisting of three phases
 - **1. Collection**
 - 2. Consolidation
 - 3. Clustering
- Classification of the system variables
 - Input parameters
 - Local and global
 - Output parameters
 - Local and global
 - Auxiliary parameters

- Modeling of cause-and-effect relationships
 - Specification of a causal loop diagram
 - Third expert workshop
 - Identification of dependencies between the system variables
 - Cause-and-effect specification
 - Detailed specification of the causeand-effect relationships
 - Polarity
 - temporal effect
 - Refinement of the initial causal loop diagram

- Modeling of cause-and-effect relationships
 - Specification of a causal loop diagram
 - Third expert workshop
 - Identification of dependencies between the system variables
 - Cause-and-effect specification
 - Detailed specification of the causeand-effect relationships
 - Polarity
 - temporal effect
 - Refinement of the initial causal loop diagram

Conceptual model development

- Developing of a conceptual simulation model based on the cause-and-effect relationships
- Which simulation technique is suitable?
 - System Dynamics (SD)
 - Agent-based simulation (ABS)
- Interface specification
 - Local input and output variables
 - Global input and output variables

- Validation of model conceptualization
 - Workshop with the domain experts
 - Domain experts check
 - Plausibility of the model
 - The specified requirements
 - Graphical model representations
 - Stock-and-flow diagrams (SD)
 - UML diagrams (ABS)

Defining the mathematical model

- Specification of a complete quantitative simulation model
- The equations are based on the results of phase three

Defining the mathematical model

- Specification of a complete quantitative simulation model
- The equations are based on the results of phase three

Implementation

- Model implementation using specialized tools
 - Sphinx SD Tools (SD)
 - Repast Simphony (ABS)

- Verification and validation
 - Verification
 - Is the model implementation correct?
 - Validation
 - Is the simulation model correct?
 - Simulation experiments
 - Input and internal parameters
 - Simulation period
 - Number of repetitions
 - Expected outputs
 - Lower and upper bounds
 - Sensitivity analysis

Conclusion

Fulfilment of requirements

- Continuous involvement of domain experts during the whole development process
- Simulation technique-independent model description by causal loop diagrams
- Usage of established methods and tools
 - Creativity techniques
 - Causal loop diagrams
 - System Dynamics and agent-oriented methodologies and tools
- Integration of simulations
 - Simulations are coupled together by its data flows
 - Classification of input and output parameters enables a stable interface specification

Conclusion

General conclusion

- Methodology is used successfully to develop several simulations
- Methodology and the results are accepted by the domain experts

- Limitations

- Only two different simulation techniques are considered
- Methodological framework for extending causal loop diagrams to agentbased models is missing

Thank you for your attention!

Contact information:

Axel Hummel

Business Information Systems

University of Leipzig

Johannisgasse 26

04103 Leipzig, Germany

phone: +49 341 9732360

hummel@informatik.uni-leipzig.de

http://bis.informatik.uni-leipzig.de/AxelHummel

The SimProgno Project

http://www.simprogno.de

Funded by the German Federal

Ministry of Education and Research

SPONSORED BY THE

Federal Ministry of Education and Research

