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Introduction

v

Increasing interest in extensions of the logic programs

v

What is the intended semantics of such programs?

v

One suggestion are the stable generated models of [HW97]

v

Problem: a local inconsistency trivialize the whole program

v

We define a three-valued paraconsistent semantics which
extends the stable generated models

WLP 2009 Axel Hummel, University of Leipzig 3/18



Preliminaries |

» signature o = (Rel, Const, Fun)
» At(0o) the set of all atomic formulas
» L(o) is defined inductively:

1. At(o) C L(o)

2. If F,Ge L(0),
then {-F, FAG, FV G, F — G, 3xF,VxF} C L(0)

v

L%(o) denotes the corresponding set of sentences

v

Let X C L(0), then X = {—F | F € X}

» Lit(o) = At(o) U At(o) the set of all literals
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Preliminaries Il

Definition (Herbrand Interpretation)
A Herbrand c-interpretation is a set of literals / C Lit’(o)

satisfying the condition {a,—a} N/ 0 for every ground atom
ac At%(o).
» Iy(o) denotes the class of all Herbrand c-interpretations
» | can be represented as a function from At°(c) to {t,f, T}

1. I(a)=T,if{a,-a} C I
2. l(a)=t/ifacland —~a¢ |
3. l(a)=f,ifa¢g land ~ac |

» linearorder f < T <t
» function neg : neg(t) = f,neg(f) =t,neg(T)=T
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Preliminaries Il

Definition (Model Relation)
The mapping I : L(c) — {t,f, T} is defined inductively by the
following conditions:
1. T(F) = I(F) for every F € At°(o)
—F) = neg(I (F))
FAG)=min{l (F),I(G)}
FV G) = max{I(F),I(G)}
F— G)=1(~FVG)
IxF(x))= sup{l (F(x/t)) : te U(o)}
VxF(x))= inf{I (F(x/t)) : te U(c)}

—~ A~ N N —~

N o ok~ W D
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Preliminaries IV

v

the set of designated truth values: {t, T},
ie. I=Fiff [(F)e{t, T}forl€ Iy(o)and F € L°(o)

I = Fiff I = v(F) for every valuation v and F € L(o)

v

v

Herbrand model operator: Mod(X) = {/ € Iy(oc) : I = X}

v

corresponding consequence relation: X |= F iff
Mod(X) € Mod(F) for X C L(o)

Proposition ([We98])

The consequence operator C defined by C(X) ={F | X = F}
is not conservative.
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Minimal Models |

Let / be an Herbrand interpretation, we define
» Pos(l) = INAP(c)

» Neg(l)=INn{-a:ac At°(c)}
» inc(l) ={a:{a,—a} C I}

Definition
Let /, J be Herbrand interpretations. Then we define
1. 1 2 Jiff Pos(I) C Pos(J) and Neg(J) C Neg(/)

2. 1T Jiffinc(l) C inc(J).
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Minimal Models Il

Definition
Let X be a set of formulas and / be an interpretation.
1. lis a t-minimal model of X iff / € Min<(Mod(X)).
2. lis an inc-minimal model of X iff / € Ming (Mod(X)).

Proposition
Let T be a quantifier-free theory and | an inc-minimal model of
the theory T. Then there exists a model J of T such that

1. inc(l) = inc(J)

2. J=XI

3. forall Jy < J such that Jy # J either inc(Jo) # inc(l) or
JET.
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Sequents and Logic Programs |

Definition (Sequent)
A sequent s is an expression of the form:

Fi,....Fm = Gy,...,Gp
where F;,Gj€ L(o)fori=1,...,mandj=1,...,n.
» Bodyof s: B(s) = {F1,...,Fm}
» Headof s: H(s) = {Gy,...,Gn}
» Seq(o): the class of all sequents s with H(s), B(s) C L(o)

» [S]: set of all ground instances of sequences from
S C Seq(o)
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Sequents and Logic Programs |l

Definition (Model of a Sequent)

Let/ € Iy. Then, I = Fy,...,Fn = Gi,..., G, iff for all ground
substitutions the following condition is satisfied:

/ ): /\ing(Fi) - ngnv(G/)-
Then /is said to be a model of F4,...,Fn, = Gy,...,Gp.

Definition (Classes of Logic Programs)

1. Normal Logic Program

NLP(o) = {s € Seq(0) : H(s) € At(o), B(s) C Lit(o)}
2. Generalized Logic Program

GLP(0) = {s € Seq(c) : H(s), B(s) C L(c;—,A,V,—)}
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Sequents and Logic Programs |l

Definition (Inc-t-minimal Model)

A model | of P C GLP(o) is said to be inc-t-minimal if I is
inc-minimal and there is no model J of P satisfying the
conditions inc(J) = inc(1l), J X 1, J # 1.

Example

P={=r(c); = —p(a); = —p(b); = p(a),p(b); =p(x)=>q(x)}.
Every intended model of P should contain g(c).
But there exists an inc-t-minimal model of P:

M; = { —p(a),p(a), ~p(b), p(c), a(a), a(b), ~q(c),
—r(a),—r(b),r(c)}
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Paraconsistent Stable Generated Models |

Definition (Interpretation Interval)

Let l1, ko € (o) such that inc(ly) = inc(k).

[/1,/2] = {I S ||-|((7) h =2 1=<band inc(l) = inc(l1)}.

For P C GLP(o) letbe Py, ,;={r | r€[P]and [h,k] = B(r)}.

Definition (Paraconsistent Stable Generated Model)

Let PC GLP(o). An inc-minimal model M of P is called
paraconsistent stable generated, symbolically M € Mods(P), if
there is a chain of Herbrand interpretations Iy < ... < ¢ such
that M = I, and
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Paraconsistent Stable Generated Models Il

Definition (Paraconsistent Stable Generated Model)

1. Mis inc-minimal

2. Iy=inc(M)U{—a| ae At’(0)}.

3. For successor ordinals o with0 < ¢ < K, Iy is a
=-minimal extension of /,_1 satisfying the heads of all
sequents whose bodies hold in [lo—1, M], i.e.
lo € Min<{ I € lu(0): M > 1> lg_1,inc(M) = inc(l),

=V H(s), forall s € Py, ., }

We also say that M is generated by the P-stable chain
IO j e —_< /K'
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Paraconsistent Stable Generated Models Il

Example

P={=r(c); = —w(a); = —p(b); = p(a), p(b); ~p(x)=q(x)}.
Because of the rules {= —p(a); = —p(b); = p(a),p(b)} it is
easy to see that P has no two-valued model.

But there are two paraconsistent stable generated models:

M; = { —r(a),~r(b),r(c),-p(a),~p(b),p(a), ~p(c),
q(a),q(b),q(c)} and

My = {=r(a),~r(b), r(c),—p(a),~p(b), p(b), ~p(c),
q(a),q(b),q(c)}-

The model My is constructed by the chain I} < Il = M.

I5 ={p(a)} U{ —r(a),r(b),~r(c),—p(a), =p(b),—p(c),
—q(a),~q(b),—q(c)}
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Paraconsistent Stable Generated Models IV
Example (continuation)
Pis.mg = { = r(e); = —p(a); = —p(b); = p(a), p(b);
—p(a) = q(a); ~p(b) = q(b); =p(c) = q(c)}

l11 =M, = { ﬁf(a),_'f(b), ( ),_'p( )7 p(b),p(a),ﬂp(c),
q(a),q(b),q(c)}.

The model M- is constructed by the chain /3 < 2 = M.
= {p(b)} U{ —r(a),~r(b),~r(c),~p(a),~p(b),~p(c),
—\q(a),—\q(b),—!q(C)}.
Pl = { = r(c); = —p(a); = —p(b); = p(a), p(b);
—p(a) = q(a); ~p(b) = q(b); ~p(c) = q(c)}
= Mg = { —r(a),~r(b),r(c),~p(a), ~p(b), p(b), ~p(c),
q(a),q(b),q(c)}
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Paraconsistent Stable Generated Models V

Proposition

Let P be a generalized logic program, and assume P is
consistent, i.e. has a two-valued classical interpretation. Then a
model | of P is paraconsistent stable generated if and only if it is
stable generated (in the sense of [HW97]).

Corollary

Let P be a normal logic program. Then a model | of P is
paraconsistent stable generated if and only if it is stable (in the
sense of [GL88]).
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Conclusion

We propose a paraconsistent semantics which generalizes the
notion of the stable generated models to possibly inconsistent
logic programs.
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