A Paraconsistent Semantics for Generalized Logic Programs

Heinrich Herre and Axel Hummel

Research Group Ontologies in Medicine and Life Sciences (Onto-Med), Institute of Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig

15 September 2009

Outline

Introduction

Preliminaries

Minimal Models

Sequents and Logic Programs

Paraconsistent Stable Generated Models

Conclusion

Introduction

- Increasing interest in extensions of the logic programs
- What is the intended semantics of such programs?
- One suggestion are the stable generated models of [HW97]
- Problem: a local inconsistency trivialize the whole program
- We define a three-valued paraconsistent semantics which extends the stable generated models

Preliminaries I

- signature $\sigma = \langle Rel, Const, Fun \rangle$
- At(σ) the set of all atomic formulas
- $L(\sigma)$ is defined inductively:
 - 1. At $(\sigma) \subseteq L(\sigma)$
 - 2. If $F, G \in L(\sigma)$, then $\{\neg F, F \land G, F \lor G, F \to G, \exists xF, \forall xF\} \subseteq L(\sigma)$
- $ightharpoonup L^0(\sigma)$ denotes the corresponding set of *sentences*
- ▶ Let $\overline{X} \subseteq L(\sigma)$, then $\overline{X} = \{ \neg F \mid F \in X \}$
- ▶ $Lit(\sigma) = At(\sigma) \cup \overline{At(\sigma)}$ the set of all *literals*

Preliminaries II

Definition (Herbrand Interpretation)

A Herbrand σ -interpretation is a set of literals $I \subseteq \operatorname{Lit}^0(\sigma)$ satisfying the condition $\{a, \neg a\} \cap I \neq \emptyset$ for every ground atom $a \in \operatorname{At}^0(\sigma)$.

- ▶ $I_H(\sigma)$ denotes the class of all Herbrand σ -interpretations
- ▶ I can be represented as a function from $At^0(\sigma)$ to $\{t, t, \top\}$
 - 1. $I(a) = \top$, if $\{a, \neg a\} \subseteq I$
 - 2. I(a) = t, if $a \in I$ and $\neg a \notin I$
 - 3. I(a) = f, if $a \notin I$ and $\neg a \in I$
- ▶ linear order $f < \top < t$
- ▶ function $neg: neg(t) = f, neg(t) = t, neg(\top) = \top$

Preliminaries III

Definition (Model Relation)

The mapping $\overline{I}: L(\sigma) \to \{t, f, \top\}$ is defined inductively by the following conditions:

- 1. $\overline{I}(F) = I(F)$ for every $F \in At^0(\sigma)$
- 2. $\overline{I}(\neg F) = neg(\overline{I}(F))$
- 3. $\overline{I}(F \wedge G) = min\{\overline{I}(F), \overline{I}(G)\}$
- 4. $\overline{I}(F \vee G) = max\{\overline{I}(F), \overline{I}(G)\}$
- 5. $\overline{I}(F \rightarrow G) = \overline{I}(\neg F \lor G)$
- 6. $\overline{I}(\exists x F(x)) = \sup{\overline{I}(F(x/t)) : t \in U(\sigma)}$
- 7. $\overline{I}(\forall x F(x)) = \inf{\{\overline{I}(F(x/t)) : t \in U(\sigma)\}}$

Preliminaries IV

- ▶ the set of designated truth values: $\{t, \top\}$, i.e. $I \models F$ iff $\overline{I}(F) \in \{t, \top\}$ for $I \in I_{\mathbf{H}}(\sigma)$ and $F \in L^0(\sigma)$
- ▶ $I \models F$ iff $I \models v(F)$ for every valuation v and $F \in L(\sigma)$
- ▶ Herbrand model operator: $Mod(X) = \{l \in I_H(\sigma) : l \models X\}$
- ▶ corresponding consequence relation: $X \models F$ iff $Mod(X) \subseteq Mod(F)$ for $X \subseteq L(\sigma)$

Proposition ([We98])

The consequence operator C defined by $C(X) = \{F \mid X \models F\}$ is not conservative.

Minimal Models I

Let I be an Herbrand interpretation, we define

- ▶ $Pos(I) = I \cap At^0(\sigma)$
- $Neg(I) = I \cap \{ \neg a : a \in At^0(\sigma) \}$
- $inc(I) = \{a : \{a, \neg a\} \subseteq I\}$

Definition

Let *I*, *J* be Herbrand interpretations. Then we define

- 1. $I \leq J$ iff $Pos(I) \subseteq Pos(J)$ and $Neg(J) \subseteq Neg(I)$
- 2. $I \sqsubseteq J$ iff $inc(I) \subseteq inc(J)$.

Minimal Models II

Definition

Let X be a set of formulas and I be an interpretation.

- 1. I is a t-minimal model of X iff $I \in Min_{\prec}(Mod(X))$.
- 2. I is an inc-minimal model of X iff $I \in Min_{\sqsubseteq}(Mod(X))$.

Proposition

Let T be a quantifier-free theory and I an inc-minimal model of the theory T. Then there exists a model J of T such that

- 1. inc(I) = inc(J)
- 2. J ≤ I
- 3. for all $J_0 \leq J$ such that $J_0 \neq J$ either $inc(J_0) \neq inc(I)$ or $J_0 \not\models T$.

Sequents and Logic Programs I

Definition (Sequent)

A sequent s is an expression of the form:

$$F_1,\ldots,F_m\Rightarrow G_1,\ldots,G_n$$

where F_i , $G_j \in L(\sigma)$ for i = 1, ..., m and j = 1, ..., n.

- ▶ *Body* of *s*: $B(s) = \{F_1, ..., F_m\}$
- Head of s: $H(s) = \{G_1, ..., G_n\}$
- ▶ Seq (σ) : the class of all sequents s with $H(s), B(s) \subseteq L(\sigma)$
- S: set of all ground instances of sequences from S ⊂ Seq(σ)

Sequents and Logic Programs II

Definition (Model of a Sequent)

Let $I \in I_H$. Then, $I \models F_1, \dots, F_m \Rightarrow G_1, \dots, G_n$ iff for all ground substitutions the following condition is satisfied:

$$I \models \bigwedge_{i \leq m} v(F_i) \rightarrow \bigvee_{j \leq n} v(G_j).$$

Then I is said to be a model of $F_1, \ldots, F_m \Rightarrow G_1, \ldots, G_n$.

Definition (Classes of Logic Programs)

- 1. Normal Logic Program $NLP(\sigma) = \{s \in Seq(\sigma) : H(s) \in At(\sigma), B(s) \subseteq Lit(\sigma)\}$
- 2. Generalized Logic Program $GLP(\sigma) = \{s \in Seq(\sigma) : H(s), B(s) \subseteq L(\sigma; \neg, \land, \lor, \rightarrow)\}$

Sequents and Logic Programs III

Definition (Inc-t-minimal Model)

A model I of $P \subseteq \operatorname{GLP}(\sigma)$ is said to be *inc-t-minimal* if I is *inc-minimal* and there is no model J of P satisfying the conditions $\operatorname{inc}(J) = \operatorname{inc}(I)$, $J \preceq I$, $J \neq I$.

Example

$$P = \{ \Rightarrow r(c); \Rightarrow \neg p(a); \Rightarrow \neg p(b); \Rightarrow p(a), p(b); \neg p(x) \Rightarrow q(x) \}.$$

Every intended model of P should contain q(c).

But there exists an inc-t-minimal model of P:

$$M_1 = \{ \neg p(a), p(a), \neg p(b), p(c), q(a), q(b), \neg q(c), \\ \neg r(a), \neg r(b), r(c) \}$$

Paraconsistent Stable Generated Models I

Definition (Interpretation Interval)

```
Let I_1, I_2 \in I_H(\sigma) such that inc(I_1) = inc(I_2).

[I_1, I_2] = \{I \in I_H(\sigma) : I_1 \leq I \leq I_2 \text{ and } inc(I) = inc(I_1)\}.

For P \subseteq GLP(\sigma) let be P_{[I_1, I_2]} = \{r \mid r \in [P] \text{ and } [I_1, I_2] \models B(r)\}.
```

Definition (Paraconsistent Stable Generated Model)

Let $P \subseteq \operatorname{GLP}(\sigma)$. An inc-minimal model M of P is called paraconsistent stable generated, symbolically $M \in \operatorname{Mod}_{ps}(P)$, if there is a chain of Herbrand interpretations $I_0 \preceq \ldots \preceq I_K$ such that $M = I_K$, and

Paraconsistent Stable Generated Models II

Definition (Paraconsistent Stable Generated Model)

- 1. M is inc-minimal
- 2. $I_0 = inc(M) \cup \{ \neg a \mid a \in At^0(\sigma) \}.$
- 3. For successor ordinals α with $0 < \alpha \le \kappa$, I_{α} is a \le -minimal extension of $I_{\alpha-1}$ satisfying the heads of all sequents whose bodies hold in $[I_{\alpha-1}, M]$, i.e.

$$I_{\alpha} \in \operatorname{Min}_{\preceq} \{ I \in I_{\mathsf{H}}(\sigma) : M \succeq I \succeq I_{\alpha-1}, inc(M) = inc(I), I \models \bigvee H(s), \text{ for all } s \in P_{[I_{\alpha-1},M]} \}$$

We also say that M is *generated* by the P-stable chain $I_0 \leq ... \leq I_{\kappa}$.

Paraconsistent Stable Generated Models III

Example

$$P = \{ \Rightarrow r(c); \Rightarrow \neg p(a); \Rightarrow \neg p(b); \Rightarrow p(a), p(b); \neg p(x) \Rightarrow q(x) \}.$$

Because of the rules $\{\Rightarrow \neg p(a); \Rightarrow \neg p(b); \Rightarrow p(a), p(b)\}$ it is easy to see that P has no two-valued model.

But there are two paraconsistent stable generated models:

$$M_1 = \{ \neg r(a), \neg r(b), r(c), \neg p(a), \neg p(b), p(a), \neg p(c), \\ q(a), q(b), q(c) \} \text{ and } \\ M_2 = \{ \neg r(a), \neg r(b), r(c), \neg p(a), \neg p(b), p(b), \neg p(c), \\ q(a), q(b), q(c) \}.$$

The model M_1 is constructed by the chain $I_0^1 \leq I_1^1 = M_1$.

$$I_0^1 = \{p(a)\} \cup \{ \neg r(a), \neg r(b), \neg r(c), \neg p(a), \neg p(b), \neg p(c), \neg q(a), \neg q(b), \neg q(c) \}$$

Paraconsistent Stable Generated Models IV

Example (continuation)

$$P_{[I_0^1,M_1]} = \{ \Rightarrow r(c); \Rightarrow \neg p(a); \Rightarrow \neg p(b); \Rightarrow p(a), p(b); \\ \neg p(a) \Rightarrow q(a); \neg p(b) \Rightarrow q(b); \neg p(c) \Rightarrow q(c) \}$$

$$I_1^1 = M_1 = \{ \neg r(a), \neg r(b), r(c), \neg p(a), \neg p(b), p(a), \neg p(c), \\ q(a), q(b), q(c) \}.$$

The model M_2 is constructed by the chain $I_0^2 \leq I_1^2 = M_2$.

$$I_0^2 = \{p(b)\} \cup \{ \neg r(a), \neg r(b), \neg r(c), \neg p(a), \neg p(b), \neg p(c), \neg q(a), \neg q(b), \neg q(c) \}.$$

$$P_{[l_0^2,M_2]} = \{ \Rightarrow r(c); \Rightarrow \neg p(a); \Rightarrow \neg p(b); \Rightarrow p(a),p(b); \\ \neg p(a) \Rightarrow q(a); \neg p(b) \Rightarrow q(b); \neg p(c) \Rightarrow q(c) \}$$

$$I_1^2 = M_2 = \{ \neg r(a), \neg r(b), r(c), \neg p(a), \neg p(b), p(b), \neg p(c), q(a), q(b), q(c) \}$$

Paraconsistent Stable Generated Models V

Proposition

Let P be a generalized logic program, and assume P is consistent, i.e. has a two-valued classical interpretation. Then a model I of P is paraconsistent stable generated if and only if it is stable generated (in the sense of [HW97]).

Corollary

Let P be a normal logic program. Then a model I of P is paraconsistent stable generated if and only if it is stable (in the sense of [GL88]).

Conclusion

We propose a paraconsistent semantics which generalizes the notion of the stable generated models to possibly inconsistent logic programs.

References

- [GL88] Gelfond, M. and Lifschitz, V.: The stable model semantics for logic programming. In R. A. Kowalski and K. A. Bowen, editors, *Proc. of ICLP*, 1070–1080. MIT Press, 1988
- [HW97] Herre, H. and Wagner, G.: Stable Models Are Generated by a Stable Chain. Journal of Logic Programming, 30 (2): 166-177, 1997
- [We98] Weber, S.: Investigations in Belnap's Logic of Inconsistent and Unknown Information.

Dissertation, University of Leipzig, 1998