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Abstract: In the ever-growing approach of Model-Driven Software Development, there is al-
ready a large number of modeling tools and frameworks. From this variety of tools, the result is
a strong heterogeneity which makes the reuse of models and metamodels to a challenge. This
paper introduces an approach for bridging modeling tools using the M3-level based bridging
pattern for enabling (meta)model interchange. Therefore, two sample frameworks are presen-
ted and analyzed. These frameworks are Microsoft’s latest modeling platform, which is coden-
amed “Oslo”, and the Eclipse Modeling Framework (EMF). Finally, a possible bridge between
Oslo and EMF is described, which is based on the M3-level based bridging pattern.

1 Introduction

Model-Driven Software Development (MDSD) is a software development approach which is ba-
sed on the consequent usage of models during the whole life cycle of a software system. Short,
models are conceptual views of a real world problem, e. g. a software system or parts of it. Now,
the key goal of the MDSD paradigm is to push models into the role of enablers instead of being
supporters. This means that models are intended to be the key concept during the development,
maintenance and operational process. Fulfilling this role requires powerful generators, transfor-
mation tools and other model operations. This requirement often results in the usage of multiple
tools and frameworks which often scope different technological spaces that typically are inope-
rable. Therefore, transformations take a special role during the development process. There is a
variety of model transformations that scope different needs during the development. For instance,
model transformations can base on one technological space or different ones. A detailed distincti-
on is given in Mens et al. [MCVG05] as a taxonomy of model transformations.

This paper scopes the M3-level based bridging of two different frameworks for Model-Driven
Software Development (MDSD), Microsoft Oslo and the Eclipse Modeling Framework (EMF).
Oslo is Microsoft’s latest modeling platform which is still under construction1. Since Oslo is
developed by Microsoft, this framework is based on the .NET platform2. In contrast to Oslo,
EMF is a mature stable modeling platform for Java developers which has a large community and
performant tools for modeling and further work on models. Regarding to the previously named

1 The project has still moved to the SQL Server project and is named SQL Server Modeling Services. Nevertheless,
the project is still in CTP status (Community Technology Preview).

2 http://www.microsoft.com/NET



taxonomy of model transformations of Mens et al. [MCVG05], this bridge would be a exogenous,
horizontal bridge between different technological spaces.

The goal and outline of this paper is to give a short introduction to the M3-level based bridging
pattern, including the key concept and the steps that have to be performed. After that, both frame-
works will be introduced and their functionality will be investigated regarding to similarities and
differences between both frameworks. Also possible benefits of bridging these frameworks will
be highlighted. Furthermore, the internally used concepts of both frameworks will be examined
to find a suitable approach of bridging Oslo and EMF. The last section of this paper introduces
a possible bridging architecture that is based on the M3-level based bridging pattern and offers
some alternative approaches for bridging both frameworks.

2 M3-Level-Based Bridges

During the last few years, the concept of M3-level-based bridges (M3B) has extensively been
discussed in several contexts. Furthermore, this approach has successfully been applied for buil-
ding a variety of bridges between different technological spaces, such as the ARIS3-EMF4 bridge
[KK07], the MetaEdit5-EMF bridge [Ker08], the Visio6-EMF bridge [KK09] or the XML-EMF
bridge [SBPM09]7. Even though it has been discussed many times, a brief summary of the inten-
tion of this pattern follows up, because of its importance for this paper.

As the name M3-level-based bridge already mentions, this approach deals with a metamodel hier-
archy [Küh06], especially its third layer. This hierarchy consists of three levels, starting with the
level of models (M1-level) which can contain data instances or even describe a whole softwa-
re system. The M2-level contains metamodels which define instantiable concepts and structural
constraints for models at M1-level. Each M1-model conforms to an associated metamodel whose
structure and concepts are also described at a higher level, the metametamodel at M3-level.

Relying on the existence of this metamodel hierarchy, the M3B pattern bridges two technological
spaces by defining a mapping between the metametamodels of both tools at M3-level [KK07,
Ker08, KK09]. This mapping covers both, the structure of the source tool space and the structure
of the target tool space, respectively theirs metamodels. Therefore, the M3-level mapping contains
several functions or rules that identify semantic relations between the concepts. Regarding to the
used metamodel hierarchy [Küh06], these concepts at M3-level constrain the usable relations
between concepts at M2-level.

After the M3-level mapping is defined, the next step is to derive both, the M2-level transformation
and the M1-level transformation from this mapping definition. Both mappings (M2-level and M1-
level), which result from the transformations, own the characteristics of isomorphisms [KK09]
which ensure the reversibility of each transformation. Figure 1 visualizes the idea of the M3B
pattern.

3 http://www.ids-scheer.com/en/ARIS
4 http://www.eclipse.org/emf
5 http://www.metacase.com/mep/
6 http://office.microsoft.com/en-us/visio
7 Further bridges, which are based on the M3B pattern, are named in the related work section.
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Figure 1: The M3B pattern

3 Microsoft Oslo

The goal of Microsoft’s latest modeling platform is to provide a central role to the models during
the whole life cycle of a software system. This means that models shall become enablers during
the design, development, deployment and management of the software, instead of giving just a
static overview of the system. This matches the common goals of the Model-Driven Software
Development [SVB+06] approach. Therefore, Microsoft has put the ability for Model-Driven
Development (MDD) directly into the .NET platform and offers both, textual and visual modeling
tools to easily create and use models over the whole process of development [Mic09a]. Next, the
three components of the Oslo platform are explained in brief.

The language “M” is a generic modeling language that offers the ability to capture domains
by textually modeling them. “M” is not only a language but rather a family of languages
including MSchema, MGrammar and MGraph. In section 3.1 modeling in “M” is explained
in detail. Closely related to “M”, the Oslo SDK provides an editor, named “Intellipad”, a
feature rich editor which is designed to model all parts of “M”.

“Quadrant” is a customizable visual tool for viewing and editing data in the context of the do-
main. For that purpose Quadrant offers several possibilities for visualizing data from multi-
ple repositories. One of these are the workpads which can give an overview over different
databases or even show the same database from different points of view. Basically, Qua-
drant offers four main view types (list views, table views, tree views and property views),
but the user is free to create any combination of them for getting the most usable interface.

The Oslo Repository serves as a central hub for managing Domain Specific Languages (DSLs)
and models across the whole enterprise. The repository is built against Microsoft SQL
Server 20088, so that it can take advantage of its features for ensuring robustness, perfor-
mance and scalability. Furthermore, the repository contains a Base Domain Library (BDL)
which provides an infrastructure and services which assist during the building of models
and model-driven applications.

8 http://www.microsoft.com/sqlserver



3.1 Modeling in Oslo (the “M” language)

As mentioned before, modeling in Oslo is mainly based on the “M” language family which con-
sists of three parts, MSchema, MGrammar and MGraph. Each of the three parts of “M” offers a
set of features that can be used to develop models and metamodels, respectively Domain Specific
Languages. In the following, all three language components are explained by an example.

MSchema is the language for defining data structures in Oslo. Within the metamodel hierarchy
[Küh06], as described in section 2, schemas created using MSchema are metamodels at
M2-level. Using “M”, these metamodels are created textually by the developer. Listing 1
shows a sample for a simple schema which describes a music library. In “M” each model
or schema exists within modules, so the schema definition starts with a module declaration.
After that, the schema defines a type, named MusicItem, which encapsulates several infor-
mation about the music items of the library. Each music item has an id of the built in type
Integer64 and will be automatically created by the repository. This id is defined as the
identifier for a music item at the end of its declaration by the string where identity Id.
Furthermore, a music item consists of the album title and the artists name, both of type Text,
as well as a rating for this item. This rating is of type Integer32 and is constrained to be
smaller than four. At the end of the schema definition, the MusicLibrary item is declared.
The music library can contain an unlimited number of music items.

1 module Oslo.EMF.Sample {
2 type MusicItem {
3 Id : Integer64 => AutoNumber();
4 Album : Text;
5 Artist : Text;
6 Rating : Integer32 where value <= 3;
7 } where identity Id;
8

9 MusicLibrary : MusicItem*;
10 }

Listing 1: Schema definition for a simple music library (from [Pur08])

Populating the schema definition to the repository is a two step process. First, the schema
has to be compiled using the “M” compiler (m.exe). This creates an image of the sche-
ma as an OPC9 file which contains the semantic graph of the metamodel, described using
XML10 [Pur08]. Second, the metamodel has to be executed with the “M” execution tool
(mx.exe). After executing the metamodel or schema definition, the repository contains the
new schema which now can be filled with data instances using MGraph.

MGraph can be used to create data instances which can be loaded into the repository. These
data can be validated against the schema before populating them to the repository. Listing
2 shows a sample MGraph data declaration which contains two music items that conform
the music library schema from listing 1. This listing defines the container (MusicLibrary)

9 OPC (OLE for Process Control) – http://www.opcfoundation.org/
10 http://www.w3.org/standards/xml/



that is supposed to contain the data instances. The container is defined within the sample
module again. After that, two data instances are created within curly brackets separated by
a comma. In the metamodel hierarchy [Küh06], the data graph which is defined by this
listing, represents a model at M1-level which conforms to the given metamodel (the music
library schema) at M2-level.

1 module Oslo.EMF.Sample {
2 MusicLibrary {
3 {
4 Album => "...Baby One More Time",
5 Artist => "Britney Spears",
6 Rating => 3
7 },
8 {
9 Album => "Leave Britney Alone",

10 Artist => "Chris Crocker",
11 Rating => 1
12 }
13 }
14 }

Listing 2: Definition of Data for the music library sample [Pur08]

Populating this model to the repository leads to a two-step process again. First, the model
has to be compiled using the “M” compiler. During the compilation process the model
can be validated against the schema for ensuring its correctness before populating the data
instances to the repository using the “M” execution tool in the second step.

MGrammar Another way of defining models is the usage of a (textual or graphical) DSL for re-
trieving structured data from it. MGrammar offers the possibility to define textual DSLs and
parsing them into structured data, matching a specific schema. Listing 3 shows a grammar
definition for a simple DSL which allows statements that match the pattern: “AlbumName”
by “ArtistName” is “Ranking”.|!. From each statement a data instance can be retrieved, to
fill the model. As an example, one could express the second data instance of listing 2 with
the statement «“Leave Britney Alone” by “Chris Crocker” is terrible!».

Each grammar definition consists of at least one syntax rule (Main). In this case, the main
syntax rule allows 1..n statements which will be put into a music library. Each statement
represents a music item, which is defined by the title of the album, the artists name and a
custom rating, as enumerated in the schema definition. Both, the album title and the artists
name are text literals which are separated by the fill word “by” and followed by the fill
word “is”. Finally, a rating follows up. The rating itself is a token whose values are defined
below the statements syntax rule as a list of possible tokens. A third syntax rule assigns
rating values that match the type Integer32 to the previously defined tokens, so that the
set of tokens can be used to retrieve ratings for the model. The statement rule does not
only constrain allowed expressions, it also assigns values to the data instances of the model
which will be created from the DSL.



1 module Oslo.EMF.Sample {
2 import Language;
3

4 language MusicLibraryLanguage {
5 syntax Main = s:Statement+ => MusicLibrary{valuesof(s)};
6 syntax Statement = al:Grammar.TextLiteral "by" ar:Grammar.

TextLiteral "is" rt:Rating ("." | "!") => {Album{al},
Artist{ar}, Rating{rt}};

7

8 token Rating1 = "terrible" | "awful";
9 token Rating2 = "so so";

10 token Rating3 = "awesome";
11

12 syntax Rating = Rating1 =>1 | Rating2 =>2 | Rating3 =>3;
13 interleave skippable = Base.Whitespace;
14 }
15 }

Listing 3: Grammar definition for a simple music library DSL [Pur08]

For populating the model which is written in the music library DSL. the grammar has to
be compiled using the “M” compiler. The next step is to run the textual model against the
compiled grammar to retrieve a model described in MGraph like the one of listing 1. The
further population process equals the one, which was explained in the section of MGraph.
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Figure 2: The modeling process in Oslo

Figure 2 gives an overview of the modeling and population process, using the “M” language. Ano-
ther option of modeling in Oslo is to use the visual modeling tool Quadrant. As already mentioned
Quadrant offers a variety of basic views and the possibility for defining custom views. For instan-
ce, the user could define a view where process chains can be visualized as Event-Driven Precess
Chains (EPC) [SKN92] or using the Business Process Modeling Notation (BPMN) [Whi04]. For
the majority of users, this would be the first idea of modeling a domain and would surely be more



interesting than defining and using a textual language, but for this paper, respectively the targeted
bridge, only the abstract syntax is of interest. This syntax can be derived from the “M” language
specification [Mic09b] which will be discussed later in section 5.

4 The Eclipse Modeling Framework

The key goal of EMF is to offer an infrastructure for building applications model-driven, which
matches the key goal of Oslo. Also in the way of modeling, data storage and visualization, equiva-
lent technologies can be found within EMF’s technological space. For instance, the CDO Model
Repository11 can be considered as an equivalent to Oslo’s Repository or graphical editors, which
are based on the Graphical Modeling Framework (GMF)12 are equivalents to custom views in
“Quadrant”. Therefore, a bridge between Oslo and EMF seems to be useless. But two possible
benefits of bridging these two frameworks would be the following.

1. Since EMF becomes more and more a central hub for bridging modeling tools and fra-
meworks, building such a bridge would pay off at the latest when the need for bridges to
other tools arises. There are already many bridges between a variety of modeling tools and
the Eclipse Modeling Framework [BBC+05, BHJ+05, KK07, Ker08, KK09] which can be
used to build transitive bridges between Oslo and any other Tool or framework, using EMF
as a hub. In example, building bridges between Oslo, EMF, Visio, MetaEdit+ and Aris
would result in implementing ten bridges (Oslo-EMF, Oslo-Visio, . . . , Visio-MetaEdit+,
Visio-Aris, . . . ). Using EMF as a central hub for bridging would only require the building
of four bridges (Oslo-EMF, Visio-EMF, MetaEdit+-EMF and ARIS-EMF), achieving the
same effect.

2. EMF is a stable and powerful framework for model-driven development which arised in
2002. This Framework has a large community, which is continuously developing a large
number of feature rich tools for special tasks of MDSD. For instance, there are several tools
for model comparison, difference calculation and model merging13, as well as frameworks
for model transformation, validity checks or code generation14, which use state of the art
techniques and provide excellent support by their developers. Remembering the objectives
of the MDSD approach, reimplementing such tools would result in a loss of performance as
well as redundancy and a possible loss of quality. Compared with this, exchanging models
between the Oslo tool space and EMF’s tool space would grant the compliance with the
goals of MDSD.

Although having highlighted Oslo and some possible benefits of bridging Oslo and EMF, we
neither know anything about how to model in EMF nor anything about its components. The next
few lines will introduce the three basic components of EMF [SBPM09] and section 4.1 will give
an introduction to the modeling process in EMF.

11 CDO (Connected Data Objects) – http://wiki.eclipse.org/CDO
12 http://www.eclipse.org/modeling/gmf/
13 e. g. http://www.eclipse.org/modeling/emft/?project=compare#compare
14 e. g. http://www.openarchitectureware.org/



The EMF Core Framework contains EMF’s metamodel, named Ecore. A simplified subset of
Ecore is shown in figure 3. Since EMF implements the OMG’s15 MOF [Obj09] specifica-
tion, it inherits its self-description feature. This means that constructs, which are available
in Ecore, are defined in Ecore. Ecore is used to describe metamodels at M2-level which
conform to the metametamodel Ecore at M3-level of the metamodel hierarchy. These meta-
models typically describe the abstract syntax for a DSL or data structures of an application.
The core framework also includes change notification and persistence support as well as
an efficient reflection Application Programming Interface (API) for manipulating EMF ob-
jects.

EMF.Edit is EMF’s framework for building model editors. Therefore, it includes generic reusa-
ble classes, such as label or content provider classes and other classes which allow EMF to
display models using standard JFace16 viewers.

EMF.Codegen is the part of the Eclipse Modeling Framework which offers possibilities for ge-
nerating code or other artifacts from EMF models. This Framework includes a Graphical
User Interface (GUI) for specifying generation options or invoking generators. Furthermore,
EMF.Codegen uses the Java Development Tooling (JDT) component of Eclipse for genera-
tion.

*
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EDataType EAttribute

EClass

containment : Boolean

EReference

EStructuralFeature

nsURI : String
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EPackage
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Figure 3: A simplified subset of EMF’s metamodel Ecore

15 OMG (Object Management Group) – http://www.omg.org/
16 http://www.eclipse.org/swt/



4.1 Modeling in EMF

Equivalent to section 3.1 (Modeling in “M”), this section will outline the process of modeling with
the Eclipse Modeling Framework. Therefore, this section is oriented at the modeling concepts of
“M” with the intention of showing up equivalences.

Below, three main parts of modeling are described using some examples. These three steps are
the definition of metamodels in EMF, the definition of data instances, respectively models and the
definition of textual and graphical DSLs.

Metamodel definition in EMF is the equivalent to schema definition with MSchema. In EMF,
every metamodel is an instance of the metametamodel Ecore, which defines the usable
concepts for metamodeling. In comparison to schema definition in “M”, the metamodeling
process in EMF is simplified by the built in Ecore model editor. Furthermore, it is possi-
ble to derive EMF metamodels from XML Schema Definitions (XSD)17 or annotated Java.
Figure 4 shows the MusicLibrary example from listing 1 as an Ecore metamodel which
was created with the Ecore model editor. This tree-based editor shows the standard repre-
sentation of models and metamodels in EMF which can be generated by the EMF.Edit
framework for each custom metamodel. Listing 4 contains the underlying XMI18 data for-
mat which consists of the concepts that are visualized by figure 3. The EMF equivalent
to Oslo’s modules are EPackages which define a space of existence for other concepts.
Concepts, which can be children of EPackages, are EClassifiers, such as EPackages
or EClasses. An EClass can be seen as an equivalent to Oslo’s type definition and can
contain EAttributes as well as EReferences, which define references to other concepts.
For EAttributes, a number of data types exist within the Ecore metametamodel, which
can be mapped onto Oslo’s built in data types. For instance, EString could be mapped
to Text and EInt to Integer8, Integer16, Integer32 or Integer64 in Oslo. A first
mapping approach between Oslo and EMF is described in section 5.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <ecore:EPackage xmi:version="2.0"...>
3 <eClassifiers xsi:type="ecore:EClass" name="MusicLibrary">
4 <eStructuralFeatures xsi:type="ecore:EReference" name="

MusicItems" upperBound="-1"
5 eType="#//MusicItem" containment="true" eKeys="#//MusicItem

/Id"/>
6 </eClassifiers >
7 <eClassifiers xsi:type="ecore:EClass" name="MusicItem">
8 ...
9 <eClassifiers xsi:type="ecore:EEnum" name="Rating">

10 <eLiterals name="terrible" value="1"/>
11 ...
12 </ecore:EPackage >

Listing 4: MusicLibrary.ecore (XMI representation)

17 http://www.w3.org/XML/Schema
18 XMI (XML Metadata Interchange) – http://www.omg.org/technology/documents/formal/xmi.htm



Before creating model instances of the MusicLibrary metamodel, the next step is to genera-
te an EMF generator model (Genmodel) from the Ecore metamodel. This generator model
uses the EMF.Codegen and EMF.Edit framework for generating model code, test code and
a standard tree-based editor from the metamodel.

Figure 4: MusicLibrary.ecore (Ecore model editor)

Model creation can be done in different ways. First, EMF offers the possibility to create dynamic
model instances of the metamodel without generating code or an editor. This feature uses
Dynamic EMF [SBPM09] to interpret the metamodel19.

Second, deriving the Genmodel from the metamodel offers the possibility to generate Java
classes which represent the data structure that is determined by the metamodel. For instance,
these classes can be used as the model for an application.

Third, depending on the generated Java classes, one can generate a standard editor20 for
the DSL, which is defined by the metamodel. This can also be done by the Genmodel.
Modeling the instance data using this editor equals the modeling of the metamodel using
the Ecore model editor. The resulting model can then be accessed during runtime under
utilization of the EMF Reflection API, so that the underlying XMI serialization only serves
as an exchange format for models and metamodels. Figure 5 shows the generated editor for
the MusicLibrary example.

DSLs There are many different possibilities to define concrete syntaxes for EMF metamodels.
For instance, these syntaxes may be graphical ones which can be generated with the Gra-
phical Modeling Framework or the Graphical Editing Framework (GEF)21. Another type
of concrete syntaxes for EMF metamodels are standard tree- or table-based editors which
can be generated by the EMF.Edit framework. An example for such an editor is the Ecore
model editor, which was shown in figure 4. The last type of concrete syntaxes for EMF
metamodels which is mentioned here are textual DSLs. There are several frameworks for

19 Using Dynamic EMF one can also build EMF metamodels during runtime.
20 It is also possible to generate custom editors from the metamodel. For instance, you can use GMF to build a graphical

editor for the DSL that is defined by the metamodel.
21 http://www.eclipse.org/gef/



Figure 5: MyMusic (generated tree-based editor and properties view)

creating textual DSLs for EMF metamodels. One of these is the Textual Modeling Frame-
work (TMF)22. Similar to the syntax definition in Oslo, one have to define a grammar for
the target DSL in EMF. For instance, this can be done with XText23 which is part of TMF.
A grammar definition, which equals the MusicLibrary grammar created with MGrammar
(listing 3), is shown in listing 5. This grammar describes the MusicLibrary DSL, which
accepts statements that match the pattern: “AlbumName” by “ArtistName” is “Ranking”.

1 grammar oslo.emf.musiclibrary.Dsl with org.eclipse.xtext.common.
Terminals

2 import "platform:/resource/Oslo-EMF/model/MusicLibrary.ecore"
3

4 MusicLibrary :
5 (MusicItems+=MusicItem)*;
6

7 MusicItem :
8 Album=STRING "by" Artist=STRING "is" Rating=Rating

("!"|".");
9

10 enum Rating :
11 terrible|awful="1" |
12 so_so="2" |
13 awesome="3";

Listing 5: XText grammar for MusicLibrary DSL

Once the grammar for the DSL is defined, one has to start an openArchitectureWare (OAW)
workflow which generates a text editor for modeling in the defined DSL. In contradiction
to Oslo, this editor natively supports syntax highlighting and code completion for mode-
led concepts. A similarity to the DSLs in Oslo is the parsing of DSL statements into the
underlying structured format (EMF models) and features like error highlighting. For this

22 http://www.eclipse.org/modeling/tmf/
23 http://www.eclipse.org/Xtext/



purpose an XText grammar is connected to an existing metamodel24, so that instances of
this metamodel can be created by the editor.

5 Bridging Oslo and EMF

This section introduces a possible approach for bridging Microsoft Oslo and the Eclipse Modeling
Framework. This approach uses the M3-level based bridging pattern whose idea has been explai-
ned in section 2. An overview of a possible architecture for a bridge between Oslo and EMF is
given by figure 6. This bridge scopes the parts MSchema and MGraph of the “M” modeling lan-
guage and leaves out the MGrammar specification. Below, a short introduction to the bridge is
given.

Applying the M3-level based bridging pattern requires the existence of a metamodel hierarchy
conform structure at each side of the bridge. EMF explicitly offers this structure with Ecore being
the metametamodel. Furthermore, Ecore conform metamodels are located at M2-level and the
M1-level is represented by models that conform to metamodels at M2-level. At the side of the
Oslo modeling framework, this structure is not so obvious. Oslo offers a metametamodel that
determines all three parts of the “M” modeling language, MSchema, MGraph and MGrammar.
This metametamodel is given implicitly in the framework and is described by the Oslo modeling
language specification [Mic09b]. Within this paper, the Oslo metametamodel is named “O3”.
Since this bridge leaves out the MGrammar part of the “M” modeling language, this part is not
visualized in figure 6. Metamodels in Oslo are described under utilization of MSchema. For this
reason, schemas which are instances of MSchema and conform to O3 are located at M2-level of
the metamodel hierarchy. Finally, models at M1-level are instances of MGraph and must conform
to a given schema.

Since the visualized bridging approach uses the M3B pattern, it requires a mapping between both
metametamodels at M3-level. It would be sufficient to realize an unidirectional mapping between
both metametamodels, for instance on the side of EMF. This would save much conceptional work
but would restrict the user to work at the technological space of EMF. Depending on this mapping,
a transformation of schemas of the Oslo modeling framework can be done generically. Therefore,
a metamodel in EMF must contain a generic structure for schemas created with MSchema. Figure
6 visualizes this by the composed EMF metamodel which consists of an MSchema part and the
original schema definition connected via a generalization relationship. The last part of the bridge
is the transformation of models which are instances of MGraph. These models will be transfor-
med based on the M3-level mapping and the M2-level transformation. These dependencies to
both higher levels of the bridge ensure the conformance of the transformed models to the trans-
formed metamodels. Both transformations, at M2-level and M1-level, are bidirectional so that an
interchange of models and metamodels between Oslo and EMF can be done in any direction.

The next sections explain the bridge more in detail, especially the transformations of metamodels
and models. An implementation of the bridge is not part of this paper, so that a use case can only
be handled theoretically.

24 There is also the possibility to generate a metamodel from the grammar definition during the editor creation process.
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5.1 M3-Level Mapping

This section describes the M3-level mapping of both modeling frameworks. The M3-level based
bridging pattern requires this mapping for offering the possibility to build bridges generically. This
means that once, the M3-level mapping is done, any metamodel at M2-level can be transformed
between both frameworks without reimplementing or configuring the bridge.

Figure 7 shows a sample mapping between the MSchema part of the “M” language and the EMF
metametamodel Ecore. This mapping consists of an EMF metamodel for the MSchema definition,
which later can be used as a part of the M2-level transformation. In the following the metamodel
is explained more in detail.

The metamodel consists of a package with name M. This package can contain all concepts of
the “M” language, but is restricted to the MSchema part in this paper. As stated in section 3,
each schema definition in Oslo exists within a module. So the metamodel contains an EClass
named Module. This EClass inherits from IdentifiedElement, which offers qualifiers and an
identifier which conforms to the “M” language specification. Furthermore, a module can con-
tain any number of module members, which can be exported to use within other modules, and
imports of members of other modules. Each module exists within one CompilationUnit and
each CompilationUnit must contain at least one module. An ImportDirective can import
any number of modules or members of modules. These are represented by The EClasses named
ImportModule and ImportMember which inherit from AliasElement. This is necessary becau-



Figure 7: M3-Level mapping of MSchema (Ecore metamodel)

se of the alias feature of “M” which offers the possibility to assign an alternative name to an impor-
ted module or module member for the usage within the module. This feature works similar to the
namespace aliases in C# or C++. ExportDirectives only contain ExportMembers, because on-
ly module members are able to be exported not the whole module. In contrast to ImportMembers,
an ExportMember only inherits from IdentifiedElement to give an export an id but no alias.
ModuleMembers are the main part of a module. These members can be intrinsic types, which are
natively built into the “M” language, Fields for data field definition or DerivedTypes which
can extend an intrinsic type or define a whole new type. A DerivedType can contain several ex-
pressions, for instance an initialization expression or an EntityTypeExpression, to define the
data type as a set of elements. For instance, the initialization expression can be an enumeration of
elements that are allowed for this type or a restriction of another data type using constraints. Fur-
thermore, a DerivedType can contain WhereExpressions which are used as constraints on the
data type. An example for such a constraint is the identity expression which is used in the schema
definition in section 3. Another where expression could restrict an integer value within a type to
be less than ten. The last mapped concept, that is explained here, is the EntityTypeExpression.
Such an expression is responsible for defining entities like the MusicItems of the schema defi-
nition in section 3. An EntityTypeExpression can contain Fields which define variables of
the entity and TypeReferences which are responsible for associating the type with another data
type.

This mapping is based on the “M” language specification [Mic09b] and shall be understood as
a sample mapping between both M3-levels. Because of the complexity of both metametamodels,
some concepts are simplified. For instance, the WhereExpression-EClass in this sample on-
ly contains a list of queries on the type as strings, where the “M” language specification uses
QueryExpressions and several other concepts which would raise the complexity of the meta-
model.



5.2 M2-Level Transformation

As stated in the introduction of the bridging approach, the M2-level transformation is based on
the mapping of both metametamodels at M3-level. The M2-level transformation is not only a ho-
rizontal transformation, but also a vertical transformation between M3-level and M2-level. This is
the result of the composed EMF metamodel which contains both, the schema definition which is
described in MSchema and the MSchema metametamodel from the “M” language specification.
This metamodel will contain an abstract structure for the MSchema metametamodel and a concre-
te class structure for the schema modeled in Oslo. These concrete classes inherit from the abstract
MSchema definition. Since this metamodel contains the abstract MSchema definition, it can be
used for any schema which can be modeled in Oslo, without changing the bridge. This avoids
the need for bridging the gap between both technological spaces again, when having to transform
other metamodels. But there is also a disadvantage. The metamodel, which results from the trans-
formation, is only a generic one which contains the whole MSchema definition (or a part of it).
Generating code from this metamodel will result in inefficient code structures which are miles
avay from the original metamodel of the opposite framework. For instance, at the MusicLibrary
example the user would expect a metamodel that looks like the one which was shown in figure
4. But applying this bridging approach to the schema (see listing 1) would result in a metamodel
which contains the MSchema definition as abstract EClasses (similar to the mapping from figure
7) and the schema part consisting of concrete EClasses which inherit from the abstract MSchema
structure. For instance, the MusicLibrary and the MusicItem EClass would inherit from the De-
rivedType EClass and there would be an EClass for each Attribute of MusicItem which inherits
from Field. This metamodel would differ from the one from figure 4 in any case.

To get the target metamodel, which can be used in a custom editor or with other tools, another
transformation is needed. This transformation bridges the gap between the generic metamodel and
the tool-specific metamodel. Although one has to implement or customize this transformation for
each new tool, this task is much simpler than transforming the original metamodels again for
every new metamodel and tool. One reason for this is, that one has to overbear the technological
gap between both frameworks only once. All other transformations, which bring the metamodel
into the custom format, can be done within the same framework. For such tasks, those frameworks
often offer powerful transformation frameworks, like OAW or Atlas in EMFs technological space.

5.3 M1-Level Transformation

With respect to the taxonomy of model transformations of Mens et al. [MCVG05], the transforma-
tion of models at M1-level is only a horizontal one. The level of abstraction stays the same, both
models (source and target) reside at M1-level. This makes the transformation a bit easier, because
the target model only must conform to the metamodel without raising or lowering the level of
abstraction, what was done during the metamodel transformation.

Similar to the transformation of the metamodels, the model transformation at M1-level would be
a generic one. The result of this transformation would also be a generic model which conforms
to the generic metamodel. Although such a model would include all information of the original
model, but would rather be useless for a specific modeling tool, just like the generic metamodel.



For this reason, a framework-intern transformation of the generic models into models, which
conform to specific metamodels, like the MusicLibrary metamodel, is needed again. Such a model
could look like the one of figure 5, which conforms to the MusicLibrary metamodel. Again, it
would be much easier to transform generic models into models that are conform to a specific
metamodel, than reimplementing or customizing the transformation between both frameworks.
There are also many other advantages, like the assurance of quality for any bridge or the lower
number of transformations, when using the M3-level based bridging pattern which would suggest
to apply this bridging approach.

5.4 Alternative approaches

This section introduces alternative approaches of bridging both frameworks. These approaches
differ in the way of implementation (or access of the different models) as well as the applied
bridging pattern.

Oslo Repository-EMF connection Rather, this approach offers an alternative in the implemen-
tation of the bridge, than in the applied bridging pattern. Since Oslo uses the SQL Server-
based repository, a transformation could access this repository directly. The M3-level based
bridging approach, which was introduced in section 5 uses Oslo’s schemas and models in
their textual representation. For instance, an Oslo-Schema could be generated from the
EMF metamodel for the MusicLibrary example, by using a custom generator, a custom
DSL or by customizing the serialization function of EMF. An Alternative for this would be
the direct access of the Oslo Repository. This could be realized by SQL statements or alrea-
dy existing technologies, like Teneo25 which already offers database serialization for EMF
models. Using such technologies would connect EMF directly to the repository without the
need of running the whole process of publication for each (meta)model.

M2-level based bridging pattern This approach introduces a real alternative to the M3B pattern,
which implicitly was named in the previous sections. The idea of this bridging approach is
to transform metamodels and models between two frameworks or tools without an M3-level
mapping. Figure 8 shows the idea of this approach for the Oslo-EMF bridge. The M2B ap-
proach uses custom transformations for each metamodel or schema and its model instances.
Applying this bridging approach requires that the user implements or customizes a bridge
for each metamodel and it’s model instances. The advantage of this approach is, that models
and metamodels match a custom format after the transformation, instead of being represen-
ted by a generic (meta)model. This makes framework-intern transformations unnecessary
but requires much more transformations between different technological spaces which rai-
ses the redundancy and may lower the quality of code or even the bridge itself. Nevertheless,
the M2B pattern may be useful for seldom-used bridges with a small number of involved
metamodels and tools. In such cases this approach can save much conceptional work and
can speed up the development process.

25 http://www.eclipse.org/modeling/emft/?project=teneo
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Figure 8: M2-Level based bridging of Oslo and EMF

Vertical transformations The last bridging approach, which will be introduced as an alternative
for the M3B pattern, is also a kind of an M3-level based bridge. In contrast to the bridge
of section 5, which was shown in figure 6, this pattern uses vertical bridging to transform
the MSchema and MGraph parts of the O3 metametamodel into separate metamodels for
MGraph and MSchema at M2-level. Furthermore, the schema, which originally is located
at M2-level, is transformed into a model at M1-level, which describes the schema and is
conform to the MSchema metamodel. The model-transformation remains horizontal at M1-
level, but in contrast to the other bridging approach, the target model is conform to the
MGraph metamodel, not the schema. This conformance relationship will emerge at the
second step of the bridging. In this step, a vertical and framework-intern transformation
is used to create a metamodel (such like in figure 4) from the schema-describing model at
M1-level. The last transformation affects the model. At this step, an in-place transformation
will be done on the model to build up the conformance relationship between the model and
the metamodel. Figure 9 shows the first step of this bridge which is used to overbear the
gap between the technological spaces. This pattern shall be understood as a suggestion for
an alternative way of bridging. It neither has been tested for a particular bridge, nor has it
been investigated with regard to functionality, advantages or disadvantages.

6 Related Work

There are many tools and papers which deal with the bridging of several modeling tools and
frameworks. A large number of them are applying the M3B approach, which is based on the map-
ping of the metametamodels of both tools. Examples for such papers and tools are the ARIS-to-
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EMF bridge [KK07], the MetaEdit-to-EMF bridge [Ker08] and the Visio-to-EMF bridge [KK09]
from the University of Leipzig, the GME-to-EMF bridge [BBC+05] and the MS/DSL Tools-EMF
bridge [BHJ+05] from the AtlanMod team, as well as the EMF-to-XML bridge [SBPM09] or the
Java Architecture for XML Binding (JAXB) [Sun09] by Sun Microsystems26. Besides the M3B
pattern for bridging modeling tools and frameworks, there are also approaches which use the
M2-level bridging pattern or other approaches to bridge (modeling) tools [BBJK05, KLN03].

There is also an already existing bridge between Oslo and EMF [JB09], which was introduced at
the eclipse summit, Ludwigsburg, Germany in October 2009. This bridge also scopes the MSche-
ma part and uses a separate transformation model which is also used in [BBC+05] and [BHJ+05]
for bridging both frameworks. Actually, the bridge is still in development, even though a first
working implementation exists. Using this implementation, they already transformated a whole
zoo of metamodels (schemas) for “M” from EMF.

26 http://www.sun.com/



7 Summary and Conclusion

This paper introduced both, the Microsoft codename Oslo modeling framework and the Eclipse
Modeling Framework and an approach for bridging them was developed. Therefore, the key con-
cepts of both frameworks were highlighted and the process of modeling was explained for each
framework by the MusicLibrary sample. This gave an introduction to the relevant components and
the way of working with them. From this outline, relevant components and concepts for bridging
could be derived. Based on these information, an approach for the bridging of both frameworks
using the M3B pattern could be developed. Every step of this bridge was explained by the Mu-
sicLibrary sample which was introduced in the Oslo section. The theoretical background of the
M3-level based bridging pattern is also explained in section 2. Finally, alternatives for bridging
Oslo and EMF were named and explained. These alternatives scoped the architecture of the bridge
as well as the possible implementation.

A next step would be a concrete implementation of the bridge, using the M3B pattern. As alrea-
dy mentioned in section 6, the AtlanMod team is developing an Oslo-to-EMF bridge yet. This
bridge already delivers correct, MSchema conform schemas. From this point of view, it would
be unnecessary to implement a further bridge. Another topic for future investigation could be the
usage of EMF as a central hub for bridging between a large number of modeling tools. This would
enable the user to build transitive bridges, what would reduce the effort for the building of bridges.
Furthermore, this could enable the possibility for synchronization of modeling tools (for example
at modeling-time).
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[BHJ+05] Bézivin, Jean ; Hillairet, Guillaume ; Jouault, Frédéric ; Kurtev, Ivan ; Piers, William: Bridging
the MS/DSL Tools and the Eclipse Modeling Framework. In: Proceedings of the International
Workshop on Software Factories at OOPSLA 2005. San Diego, California, USA, 2005
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