
Integration of Microsoft Visio and Eclipse
Modeling Framework Using

M3-Level-Based Bridges

Heiko Kern and Stefan Kühne

Business Information Systems, University of Leipzig
Johannisgasse 26, 04103 Leipzig, Germany
{kern|kuehne}@informatik.uni-leipzig.de

Abstract. Nowadays there are powerful tools for Model-Driven De-
velopment. An ongoing problem is the insufficient tool interoperability
which complicates the development of complete tool chains or the reuse
of existing metamodels, models, and model operations. In this paper we
present the approach of M3-Level-Based Bridges and apply this approach
to enable the interoperability between two selected tools. The first tool is
Microsoft Visio with strengths in modelling and information visualization
and the second tool is the Eclipse Modeling Framework with advantages
in model processing by transformation and generation tools.

1 Introduction

The approach of Model-Driven Development (MDD) [1] has gained in relevance
during the last decade. The consequent use of models, modelling languages and
model operations as central concepts in this approach leads to several advantages:
a better handling of complexity, more efficient development processes, and im-
proved software quality, to name a few. Today powerful tools are available for the
support of typical MDD tasks such as language definition, modelling or model
processing. But an ongoing problem is the insufficient tool interoperability [2,
3]. This lack of interoperability complicates the development of complete tool
chains or the reuse of existing metamodels, models, and model operations in a
development process.

In this article, we present the approach of M3-Level-Based Bridges (M3B)
to achieve tool interoperability between different MDD tools. We apply this ap-
proach to realise the interchange of metamodels and models between two selected
tools: Microsoft Visio [4] and Eclipse Modeling Framework (EMF) [5]. Microsoft
Visio is a widely used commercial tool that is mainly suitable for modelling and
visualising information. Visio provides the definition of modelling languages by
using stencils. The tool is part of the Microsoft Office Suite that enables the
integration into other Microsoft products. In addition, there are many tools and
add-ons (ViFlow1, SemTalk2, etc.) that provide the modelling in specific do-
mains, for instance, in business process management. The second tool or, more
1 http://www.viflow.com
2 http://www.semtalk.com



precisely, framework is given by the Eclipse Modeling Framework and by tools
(Epsilon3, openArchitectureWare4, etc.) based on this framework. EMF allows
the definition of domain-specific metamodels and provides basic functionalities,
such as a serialization function, a generator language, and an API to access
(meta)models. In summary, the motivation to build an M3B between Visio and
EMF is that both tool spaces can benefit from the created interoperability be-
cause Visio has advantages in modelling and EMF provides a wide range of
model processing tools.

The paper is structured as follows: in the following section, we will give a
conceptual overview of M3B. As the bridge is based on the mapping between
metametamodels, we will explore the metamodel hierarchy of Visio and EMF
in section 3. Then, we will present the development of the bridge and show an
example in section 4. Lastly, we will give an overview of related works in section 5
and will present our conclusions in section 6.

2 M3-Level-Based Bridges

The M3B approach is well-established and has been successfully applied in build-
ing bridges between different tool spaces. M3Bs are, for instance, the ARIS5-
to-EMF bridge [6], MetaEdit6-to-EMF bridge [7], or XML-to-EMF [5] bridge.
Although the implementation of such bridges can differ in technical terms, the
conceptual approach is the same.

A basic prerequisite to construct M3Bs is the existence of a metamodel hi-
erarchy [8] consisting of three levels. At the lowest level (M1-level) are models
which describe a software system. The structure of these models and the available
concepts that can be instantiated in these models are defined by a metamodel
at M2-level. Finally, the structure and the available concepts of the metamod-
els are defined by a metametamodel at M3-level. Models, metamodels and the
metametamodel are connected by a linguistic instance relationship [8] that can
also be denoted as conform-to relationship [9].

Based on the existence of such hierarchies, the basic step to build an M3B
is the mapping between the metametamodels. The mapping consists of different
mapping rules that specifiy the relation between semantically equivalent con-
cepts. Semantic equivalence means, for instance, that the concepts at M3-level
which express relationships at M2-level are mapped onto each other. Further
semantic concepts are described in [7] and include, for instance, object type,
attribute type or data type. Based on the mapping specification, the transfor-
mation of metamodels and models can be derived. To create the transformations,
it is necessary to know how the conform-to relationship is realised between each
level. The M2-level transformation maps metamodels between hierarchies. The

3 http://www.eclipse.org/gmt/epsilon/
4 http://www.openarchitectureware.org
5 http://www.ids-scheer.com
6 http://www.metacase.com



M1 M2 M3 M4

MM1

MMM

MM2

M1' M2' M3' M4'

MM1'

MMM’

MM2'

M1

M2

M3
Mapping

Transformation

Transformation 

conform to

conform to conform to

conform to

Fig. 1. Pattern of M3-Level-Based Bridges

metamodels in both hierarchies are isomorphic. Analogous to the M2-level trans-
formation, the M1-level transformation enables the mapping of models. These
models are also isomorphic. Figure 1 shows the concept of M3B.

The use of the transformation taxonomy from Mens et al. [10] characterise
the transformations as follows. The M2-level transformation is horizontal and
exogenous because the abstraction level stays the same and the metametamodels
are different. The M1-level transformation is horizontal and endogenous because
the abstraction level also stays the same and the metamodels are equal.

3 Modelling with Visio and EMF

3.1 Model Structure in Visio

A linguistic metamodel hierarchy consisting of three levels occurs in Visio: V3
model at M3-level, stencils at M2-level, and Visio models at M1-level. In this
section we present the data structure for Visio models at M1-level in order to
describe the M1-level transformation later.

To analyse the data structure we have used mainly the Visio object model7

(Visio’s programming interface) and the user interface. A snippet of the model
structure is shown in Figure 2. Visio models are stored in documents that are
usually files with a name. A document consists of pages. A page has also a name
and is a canvas that contains shape elements. A shape is a model element and is
an instance of a master from a stencil. Hence, a shape has a reference attribute
to a master. A shape can have its own data properties (defined only at M1-
level) and data properties defined in a master (defined at M2-level). A page can
likewise have data properties. Data properties store values with a specified data
type. Visio supports data types such as text, numbers, time, date, currency and
list. Furthermore, a shape can contain other shapes and can be connected with
other shapes.

7 http://msdn.microsoft.com/en-us/library/aa342179.aspx



name : string

Document

name : string

Page

1 *

pages

text : string
master : master

Shape

*

1
shapes data type : visioDataType

value : datatype

Data Property

*

1 properties

*

*

connects

1 *

properties

*

*
contains

Fig. 2. Data Structure of Visio Models

3.2 Metamodelling in Visio

Visio offers the functionality for building Domain-Specific Languages (DSL) [11].
The (concrete and abstract) syntax of a DSL can be defined by stencils. Anal-
ogous to the analysis of the model structure, we have studied the object model
and the user interface. The result of the analysis is a metametamodel that ex-
plicates the language definition concepts. This metametamodel is here denoted
as V3 model (see Fig. 3).

Contrary to other metametamodels, the V3 model is relatively simple. It con-
sists of Stencil, Master, and Data Property. A stencil (instance of Stencil)
is a set of masters (instances of Master). A master describes a class of model
elements (in Visio denoted as shape – see previous subsection) which can exist
on their own. Masters can occur in two forms: a simple shape and a connection
shape. In the context of a graph, a simple shape and a connection shape can
be regarded as a node and an edge, respectively. A further metamodelling con-
cept is to define properties (instances of Data Property). Each data property
is assigned to a master, has a data type, and can have a default value.

In addition to defining an abstract syntax, Visio provides the description of
a concrete syntax. Each master owns a graphical form which can be any kind
of graphical construct (e.g. rectangle, circle, line, icon, star, polygon, ellipse,
a combination of these figures, etc.). Data properties can also be displayed as
textual annotation.

name : string

Stencil

name : string
isConnection : bool

Master
*1

masters Data type : visioDataType
value : data type

Data Property*1

properties

Fig. 3. Definition of Visio Stencils



3.3 Metamodels and Models in EMF

Contrary to Visio, developed especially for modelling and information visual-
ization, EMF is designed to support the development of (Eclipse) applications.
Models describing EMF applications can be regarded as metamodels and in-
stances of these metamodels can be regarded as models. All metamodels are
instances of the metametamodel Ecore which is implemented in EMF.

A simplified subset of Ecore is shown in Figure 4. The main elements of Ecore
are EPackage, EClass, EReference and EAttribute. An EPackage is identified
by an Uniform Resource Identifier and contains a set of EClassifiers. An EClassi-
fier can be an EClass or an EDataType. An EClass defines an EMF metamodel
element that represents a set of similar model entities. EClasses can have ERef-
erences which express unidirectional relationships between two EClasses. An
EClass can additionally have EAttributes to express properties of this EClass.
The range of the attribute values are specified by an EDataType such as EInt,
EString or EDate. A further metamodelling concept is the inheritance between
EClasses.

Apart from considering the structure of Visio models (see Section 3.1), we
need to know the structure of EMF models in order to build the M1-level trans-
formation. Every model element in EMF is an EObject specified by a Java
interface. The EObject interface provides different methods which enable the
navigation in models and allow the query of metatype information. For instance,
the EObject.eGet(EStructuralFeature) method returns either all EObjects, ref-
erenced by a certain EReference, or values of the EAttributes. Further, the EOb-
ject.eClass() method returns the EClass of a model element.

EClass

EReference

EDataTypeEAttribute

eReferenceType

eAttributeType

EStructuralFeature
eStructural
Features

eSuperTypes

EPackage
eClassifiers

EClassifier

Fig. 4. Subset of Ecore



4 Microsoft Visio to EMF Bridge

4.1 Overview

Microsoft Visio and Eclipse EMF can be divided into three levels: M3 (V3 and
Ecore), M2 (Visio stencils and EMF metamodels), and M1 (Visio models and
EMF models). Based on this level structure, we apply the approach of M3-
Level-Based Bridge (see Fig. 5). The M3-level mapping specifies an unidirectional
mapping from V3 to Ecore. Using this mapping, we can derive the transformation
rules at M2-level which export stencils to EMF. Several transformation rules map
different Visio concepts onto one Ecore concept. To distinguish the different Visio
concepts in Ecore, we introduce an abstract EMF metamodel that approximates
the data model structure of Visio (see Fig. 6). All exported metamodel elements
are inherited from a corresponding abstract metamodel element. For our purpose,
the export of stencils is sufficient and we will therefore ignore the import of EMF
metamodels to Visio. The consideration of this import would be possible on the
condition that all metamodel elements are inherited from an abstract metamodel
element. Based on the M3-level mapping and M2-level transformation, we can
derive the M1-level transformation which enables the export and re-import of
Visio models.

Eclipse EMF

Ecore

conforms to

conforms to

Model

conforms to

M3

M2

M1

Microsoft Visio

V3

conforms to

Data
model

Stencil

Metamodel

generalization

M2-level
transformation

M1-level
transformation

M3-level 
mapping

based 
on

Model

Stencil

Data 
model

EObject

determinates determinates

instance of instance of

based
on

Fig. 5. Overview of the Visio-to-EMF Bridge



4.2 M3-Level Mapping

We propose the following mappings:

Stencil 7→ EPackage: In Visio a stencil contains a set of modelling concepts
in terms of masters. A similar concept in Ecore is the EPackage concept.
EPackage can also group modelling concepts. Therefore, we map Stencil
onto EPackage. The name of Stencil maps onto the name of EPackage and
the association masters maps onto the reference eClassifiers from EPack-
age.

Master 7→ EClass: In Visio a master can define a set of model elements. The
corresponding concept in Ecore is the EClass concept which can also define
a set of model elements. Hence, we map Master onto EClass. The stencil
of a master is equivalent to the EPackage of the corresponding EClass. The
name of Master maps onto the name of EClass.

Data Property 7→ EAttribute: A data property in Visio and an EAttribute in
Ecore can be used to describe properties of a set of modelling elements. Thus,
we map Data Property onto EAttribute. The name of a data property
is equal to a name of an EAttribute. Visio supports data types such as:
string, number, list, boolean, currency, date and time. We map these types
as follows {Visio data type 7→ EMF data type}: {string, currency, date, and
time 7→ EString}, {number 7→ EInt}, {booelan 7→ EBoolean}, {list 7→ multi-
value EAttribute}.

4.3 M2-Level Transformation

The M2-level transformation consists of transformation statements which are
derived from the M3-level mapping specification. The mapping rule Stencil 7→
EPackage transforms all stencils in EPackages. The rule Master 7→ EClass
transforms all masters in EClasses. If the masters are a simple shape, then
the corresponding EClasses are inherited from the abstract EClass “Shape” (see
Fig. 6). If the masters are a connection shape, then the corresponding EClasses
are inherited from the abstract EClass “Connection” (see Fig. 6). The last rule
Data Property 7→ EAttribute transforms all data properties to EAttributes
with the equivalent data type and optional with a default value.

4.4 M1-Level Transformation

The M1-level transformation contains transformation statements which are also
derived from the M3-level mapping specification. The mapping rule Master 7→
EClass transforms all shapes (instances of a certain master) to EObjects (in-
stances of the EClass corresponding to the master). The rule Data Property 7→
EAttribute causes the transformation of all property values of a shape into
values of an EAttribute which corresponds to the shape’s EClass. The rule
Stencil 7→ EPackage has no effect at the M1-level. In addition to the derived
transformation rules, graphical model data such as symbol position or symbol



Document Page

Shape

Connection

Attribute

1 *

pages

*

1

shapes

*

*

contains

1
*

properties

*

1 properties

*

*

connects

Fig. 6. Abstract Visio Data Model in EMF

size is transformed into EMF model data. Furthermore, all data properties de-
fined at M1-level are transformed into instances of the EClass “Attribute” taken
from the abstract metamodel.

4.5 Implementation

We have prototypically realised the Visio-to-EMF bridge as an Eclipse plug-
in. The bridge consists mainly of three parts. The first part is the M2-level
transformation which creates EMF metamodels from stencils. We have written
a C# program that exports stencil data as an XML document. This document is
read by a stencil reader that is implemented in Java. The model is transformed
afterwards, according to the M2-level rules. The transformation builds an in-
memory object model and serialises the objects as an XMI file in Ecore format.

The second part of the bridge is the M1-level transformation with Visio
models as input and EMF models as output. Analogous to the stencil export,
a C# program creates an XML document containing the Visio model data.
Furthermore, we have implemented a model reader and the transformation rules
in Java. The reader navigates through the Visio model and creates EMF model
elements. The EMF model is also created in a dynamic way (i.e. in-memory)
and is serialised as an XMI file.

The third part of the bridge is the M1-level transformation with EMF mod-
els as input and Visio models as output. The transformation creates an XML
document from the EObject model with XPand8. The document contains the
Visio model data which is parsed by a C# program. This program creates the
Visio model by using the Visio programming interface.

4.6 Use Case

A concrete example should illustrate the Visio-to-EMF bridge. In this case we
want to export Event-Driven Process Chains (EPC) [12] from Visio to EMF in
8 XPand is a part of openArchitecureWare.



order to reuse a validation approach for business processes [13] that we have
already implemented with EMF-based tools.

EPC is a graphical modelling language to describe business processes. EPC
models consist of nodes and arcs. Nodes can be functions, events, or connectors.
Arcs between these elements represent the control flow. Connectors are used
to model parallel (AND-connectors) and alternative (XOR-connector and OR-
connector) executions.

Figure 7 shows at the left-hand side the metamodel hierarchy with the V3
model, EPC stencil and EPC model that is to be transformed into EMF. The re-
sults of the transformations are the EMF metamodel and the EMF model at the
right-hand side. Afterwards, we need to transform the exported EMF-Visio mod-
els into EMF models conforming to an EPC metamodel used by the validation
rules. This transformation is easy to realise by a model-to-model transformation
with EMF-based transformation tools. Thereafter, we can apply the validation
rules to check the models. In this case the model contains no errors.

The above example is very specific but, it is also possible to use other stencils
and Visio models. Furthermore, the usage of other bridges from EMF to other
metamodel hierarchies enables the usage of further tools. For instance, the ARIS-
to-EMF bridge enables the application of ARIS tools.

Order 
received

Check order

Order validOrder 
invalid

Fulfil order
Refuse 
order

Order 
processed

XOR

Stencil Master
*1 masters

XOR

EPC:Stencil XOR:Master

Event:Master

Function:Master

Connection:Master

masters

masters

masters

masters

XOR

M1

M2

M3 EPackage EClass
*1 eClass

EPC:EPackage XOR:EClass

Event:EClass

Function:EClass

Connection:EClass

eClass

eClass

eClass

eClass

Microsoft Visio Eclipse EMF

Fig. 7. Export of Visio-EPC models to EMF-EPC models



5 Related Work

As already mentioned in section 2, the M3B approach occurs in many cases
such as ARIS-to-EMF [6], MetaEdit-to-EMF [7], EMF-to-XML [5] or XML-to-
Relational Database [14]. All these bridges apply the same pattern to integrate
different metamodel hierarchies. They define a mapping on the M3-level and use
the instance-of relationship between the underlying level to transform metamod-
els at M2-level and models at M1-level.

In the context of tool integration, the existing approaches are manifold. Re-
garding the level of transformation, the M3B approach is based upon a mapping
onto the M3-level. Other approaches [15, 2] work on M2-level, that is, the in-
tegration is based on a transformation between metamodels correlating to the
data models of the tools.

Furthermore, there are generic data formats such as the XML Metadata In-
terchange [16] or the Graph eXchange Language (GXL) [17]. GXL, for instance,
offers support for exchanging instance graphs together with their appropriate
schema information in an uniform format. GXL is based on typed, attributed,
ordered directed graphs, which are extended by concepts to support the repre-
sentation of hypergraphs and hierarchical graphs. Theoretically, GXL could be
used in order to realise the exchange of the data between each level. For this,
each model has to be transformed into this graph format.

6 Summary and Conclusion

In this paper, we have developed an interface for the exchange of metamodels and
models between Microsoft Visio and Eclipse EMF by applying the concept of M3-
Level-Based Bridges. For this purpose, we explored the Visio stencil definition
concepts and the underlying data structure of models. Furthermore, we described
the metametamodel Ecore and the generic model storage structure of EMF.
Based on this information, we specified an M3-level mapping and derived an M2-
level and M1-level transformation. Based on the transformation specification,
we have implemented the bridge as an Eclipse plug-in. Furthermore, we have
demonstrated the bridge by an example of EPC export. M3-Level-Based Bridges
have already been used repeatedly to achieve (meta)model interchange between
different tools based on metamodel hierarchies. As a result of the development
and the study of this bridge and other bridges, we can say that this approach is
useful to build tool chains and to reuse models and model operations. In a next
step, we want to describe the concept in a more formal way than presented in
this paper.



References

1. Stahl, T., Völter, M.: Model-Driven Software Development – Technology, Engi-
neering, Management. John Wiley & Sons Inc. (2006)

2. Bezivin, J., Brunelière, H., Jouault, F., Kurtev, I.: Model Engineering Support
for Tool Interoperability. Proceedings of the 4th Workshop in Software Model
Engineering (WiSME) (2005)

3. Karsai, G., Lang, A., Neema, S.: Tool Integration Patterns. Workshop on Tool
Integration in System Development (TIS) (2003)

4. Biafore, B.: Visio 2007 Bible. John Wiley & Sons Inc. (2007)
5. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-

work. The Eclipse Series. Addison-Wesley Longman (2009)
6. Kern, H., Kühne, S.: Model Interchange between ARIS and Eclipse EMF. In

Tolvanen, J.P., Gray, J., Rossi, M., Sprinkle, J., eds.: 7th OOPSLA Workshop on
Domain-Specific Modeling at OOPSLA 2007. (2007)

7. Kern, H.: The Interchange of (Meta)Models between MetaEdit+ and Eclipse EMF
Using M3-Level-Based Bridges. In Tolvanen, J.P., Gray, J., Rossi, M., Sprinkle,
J., eds.: 8th OOPSLA Workshop on Domain-Specific Modeling at OOPSLA 2008.
(2008)

8. Kühne, T.: Matters of (Meta-) Modeling. Software and Systems Modeling 5(4)
(2006) 369–385

9. Bézivin, J.: On the Unification Power of Models. Software and System Modeling
4(2) (2005) 171–188

10. Mens, T., Czarnecki, K., Gorp, P.V.: A Taxonomy of Model Transformations
[online]. In Bezivin, J., Heckel, R., eds.: Language Engineering for Model-Driven
Software Development. Number 04101 in Dagstuhl Seminar Proceedings, Interna-
tionales Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany
(2005)

11. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling – Enabling Full Code Gener-
ation. John Wiley & Son, Inc. (2008)

12. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozeßmodellierung auf der
Grundlage Ereignisgesteuerter Prozeßketten (EPK) (in German). Technical Re-
port Heft 89, Institut für Wirtschaftsinformatik, Universität des Saarlandes, Saar-
brücken (1992)

13. Kühne, S., Kern, H., Gruhn, V., Laue, R.: Business Process Modelling with Con-
tinuous Validation. In Pautasso, C., Köhler, J., eds.: 1st International Workshop
on Model-Driven Engineering for Business Process Management. (2008)

14. Balmin, A., Papakonstantinou, Y.: Storing and querying XML data using denor-
malized relational databases. The VLDB Journal–The International Journal on
Very Large Data Bases 14(1) (2005) 30–49

15. Amelunxen, C., Klar, F., Königs, A., Rötschke, T., Schürr, A.: Metamodel-based
Tool Integration with MOFLON. Proceedings of the 30th International Conference
on Software Engineering (2008) 807–810

16. Object Management Group: MOF 2.0/XMI Mapping, Version 2.1.1. Technical
report (2007)

17. Winter, A., Kullbach, B., Riediger, V.: An Overview of the GXL Graph Exchange
Language. Volume LNCS 2269., Springer (2002) 324–336


