Engineering IT-basierter Dienstleistungen

Prof. Dr. Klaus-Peter Fähnrich

Teil 7: Methoden und Werkzeuge

Engineering IT-basierter Dienstleistungen

- 1. Einführung
- 2. Typologisierung von Dienstleistungen
- 3. Grundlagen des Service Engineering
- 4. Vorgehensmodelle
- 5. Plattformstrategie: Produktmodelle und Modularisierung
- 6. Methoden und Werkzeuge I
- 7. Methoden und Werkzeuge II
- 8. Methoden und Werkzeuge III
- 9. Methoden und Werkzeuge IV
- 10. Werkzeuganwendung I
- 11. Werkzeuganwendung II
- 12. Zusammenfassung Werkzeuge
- 13. Service-Technologien
- 14. Kundenintegration und Kundenmanagement
- 15. Management der Dienstleistungsentwicklung
- 16. Fallstudie IT-Services
- 17. Standardisierung im Dienstleistungsbereich
- 18. Dienstleistungen im internationalen Wettbewerb
- 19. Praxisteil I
- 20. Praxisteil II

Methoden und Werkzeuge: Ein Überblick

Kreativitätstechniken

- Mindmapping
- Brainstorming
- Reizwort

Implementierung

- Markteinführung
- Kundeninteraktion /-integration

Ideenfindung und -bewertung

Anforderungen

Design

Einführung

Anforderungsanalyse

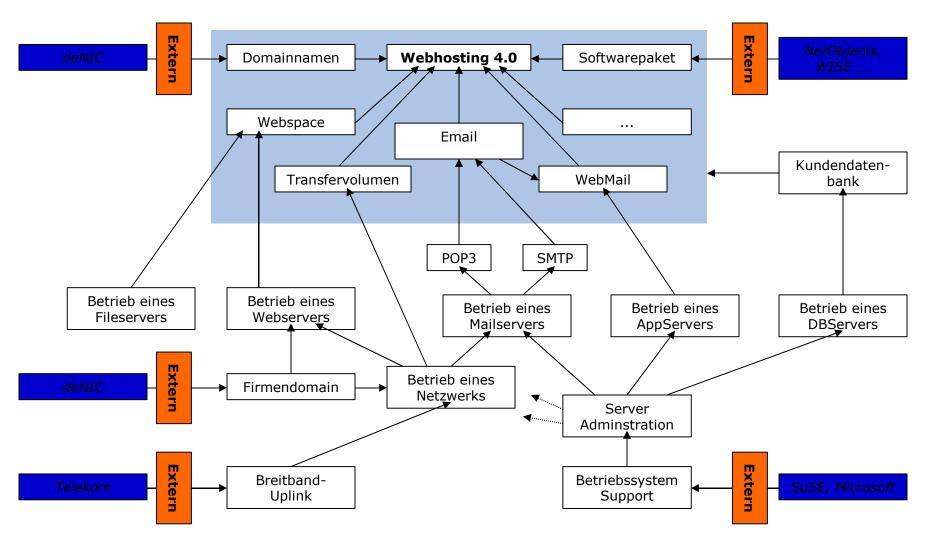
- Produktkriterien
- Priorisierung

Modellierung

- Produktmodell
- Prozessmodell
- Service

Blueprinting

Warum Modellierung?


- Ein Modell ist eine formale Beschreibung eines Ausschnitts der realen Welt, also z.B. eines Produktes oder Geschäftsprozesses.
- Modelle helfen, die Welt besser zu verstehen, da komplexe Dinge abstrahiert werden
- nur durch die möglichst umfassende Modellierung des geplanten Service-Prozesses können die wichtigen Fragen der Implementierung geklärt werden
- Die Modellierung von Dienstleistungen umfasst
 - Produkte
 - Prozesse
 - Ressourcen (menschliche, materielle und immaterielle)
 - Organisation

Produktmodelle

Institut für Informatik Betriebliche Informationssysteme

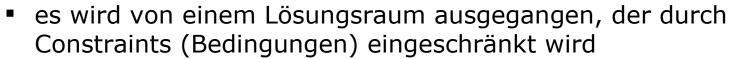
kurze Wiederholung: Produktmodell IT-Service

Institut für Informatik
Betriebliche Informationssysteme

Produktmodelle/Produktkonfiguration

- ein (Service-)Produkt besteht aus Komponenten
- die Zusammenstellung der Komponenten heißt auch Konfiguration
- die Komponenten haben Abhängigkeiten von anderen Komponenten, um diese aufzulösen, gibt es verschiedene Ansätze

Institut für Informatik
Betriebliche Informationssysteme

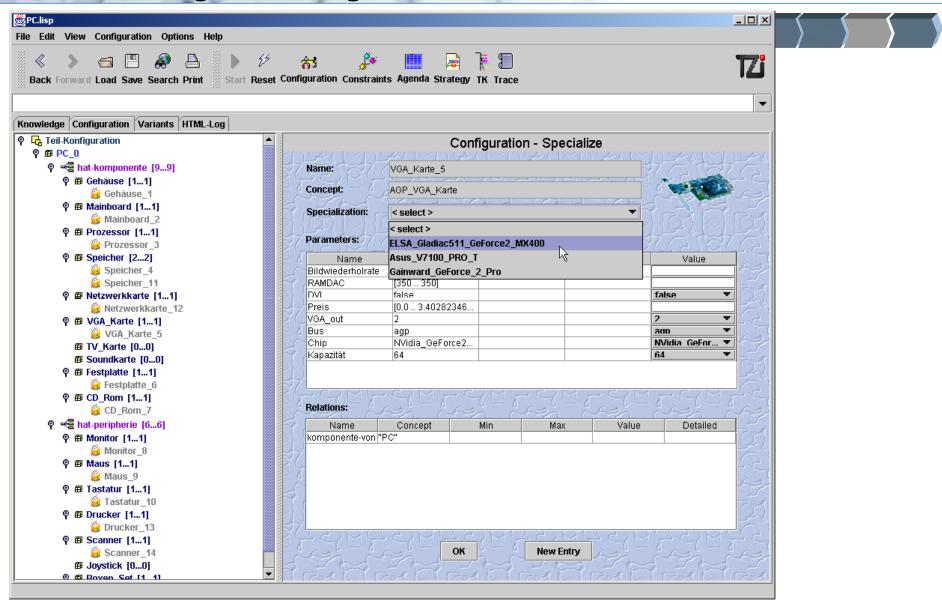

Produktkonfiguration

- regelbasiert (rule-based)
 - feste Regeln, nicht flexibel
 - wenn eine neue Komponente hinzukommen, müssen evtl.
 viele bestehende Regeln angepasst werden
- fallbasiert (case-based)
 - basiert auf Wissensdatenbank mit bekannten Lösungen
 - neue Konfigurationen werden evtl. falsch auf bekannte Lösungen abgebildet
 - erstellen der Datenbank ist sehr aufwändig
- ressourcenbasiert (resource-based)
 - z.B. Webserver braucht Ressource "Speicherplatz", diese bietet ein Fileserver an
 - vielversprechendes Modell

Institut für Informatik
Betriebliche Informationssysteme

Produktkonfiguration (2)

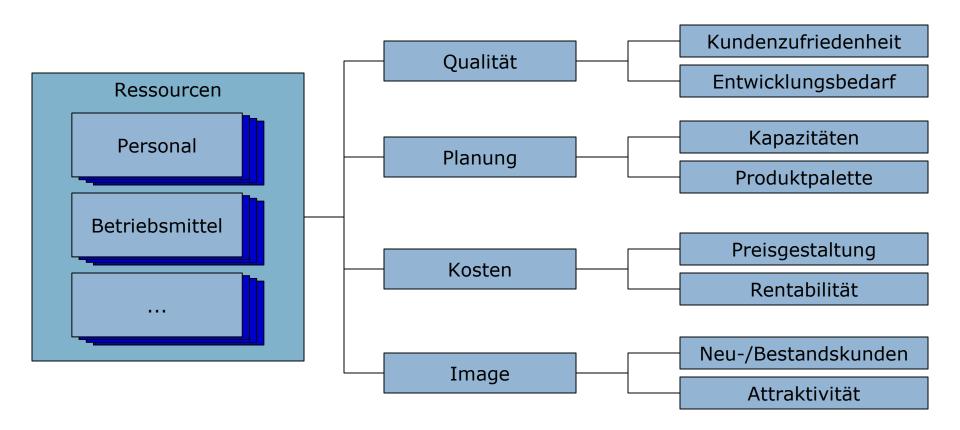
- die Constraints beziehen sich auf Beziehungen zwischen Objekten oder deren Eigenschaften
- Nachteil: das CSP (Constraint Satisfaction Problem) ist NPvollständig, also kann das Finden einer Lösung sehr aufwändig oder auch unmöglich sein
- strukturbasiert (structure-based)
 - Aufbau eines Dekompositionsbaums, der alle möglichen Konfigurationen repräsentiert
 - jede Konfiguration ist ein Teilbaum des Dekompositionsbaums
 - aufwändige Taxonomie-Erstellung, nicht für dynamische Konfigurationen geeignet, da hoher Änderungsaufwand


Institut für Informatik Betriebliche Informationssysteme

Produktkonfiguratoren

- Produktkonfiguratoren werden als Teilbereich der KI entwickelt
- wichtigste Forschungsprojekte sind:
 - EngCon für regelbasierte Systeme, aber auch hybrid für strukturbasiert
 - ILOG für constraint-basierte Systeme
 - Cosmos für ressourcen-basierte System
 - KONWERK für strukturbasierte System

Produktkonfigurator: EngCon Screenshot

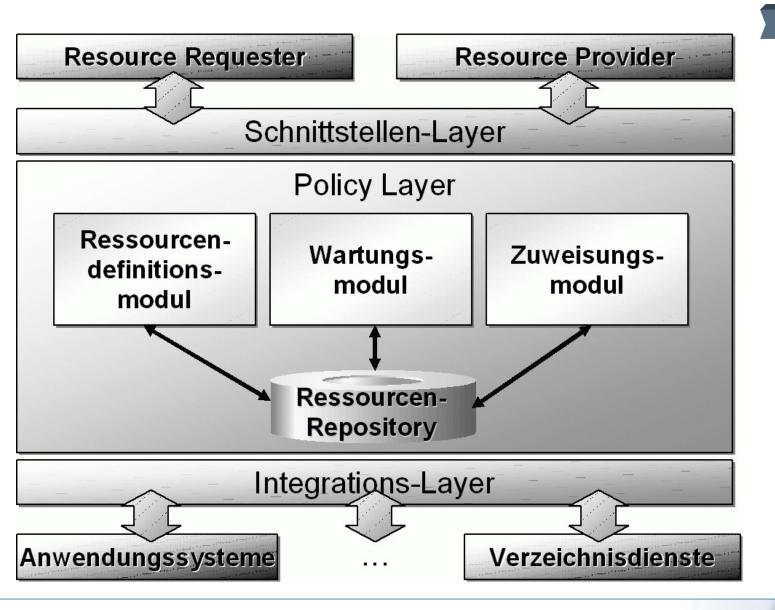

Ressourcenmodelle

- Ressourcenmodelle beschreiben die Gesamtheit aller für den Engineering-Prozess benötigten Ressourcen.
- Ressourcen sind
 - menschlich, also interne und externe Mitarbeiter (human resources)
 - materiell, also Betriebsmittel wie Hardware
 - immateriell, also z.B. Software oder auch Zeit
- Ressourcen können modelliert werden durch
 - Organigramme (Organisationssicht)
 - Entity-Relationship-Modelle (Datensicht)
 - Funktionszuordnungsdiagramme (Funktionssicht)
 - Leistungsbäume (Leistungssicht)
 - **-** ...

Warum brauchen wir Ressourcenmodelle?

Merkmale von Ressourcen

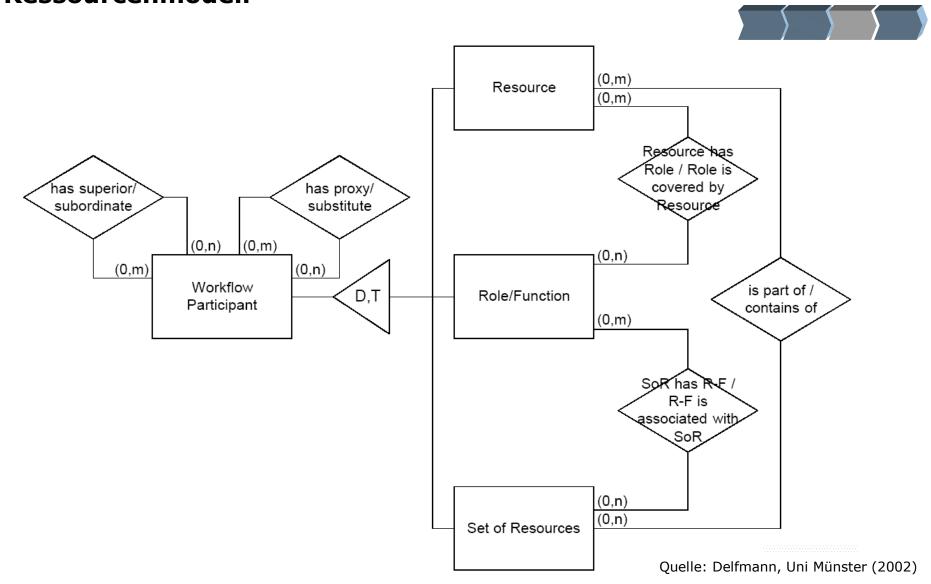
Institut für Informatik Betriebliche Informationssysteme



Merkmal	Ausprägung					
Тур	human		technisch			
Beständigkeit	wiederverwen	dbar	konsumierbar			
Nutzung	exklusiv		gemeinsam			
Zuweisung	Push	Pı	ıll	Mischform		
Beitrag	akti∨		passiv			
Ort	stationär		mobil			
Unabhängigkeit	autonom		abhängig			
Verfügbarkeit	nicht verfügbar	unverz	züglich	verzögert		
Kapazität	begrenzt		unbegrenzt			
Qualification						

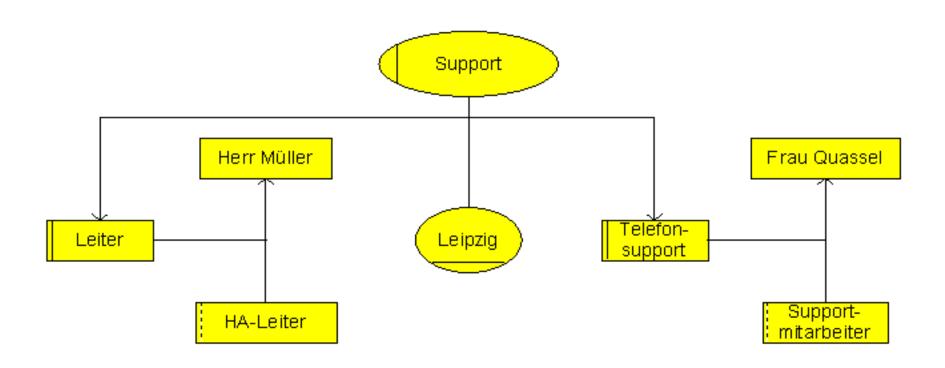
Quelle: Delfmann, Uni Münster (2002)

Ressourcenmanagement-System


Institut für Informatik Betriebliche Informationssysteme

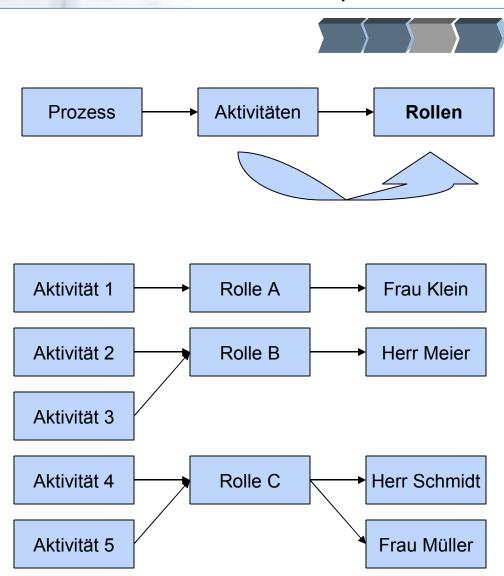
Quelle: Delfmann, Uni Münster (2002)

Institut für Informatik Betriebliche Informationssysteme


Beispiel: Generisches WfMC-Ressourcenmodell

Institut für Informatik Betriebliche Informationssysteme

Modellbeispiel: Organigramm



Institut für Informatik Betriebliche Informationssysteme

Einsatz von Rollenkonzepten

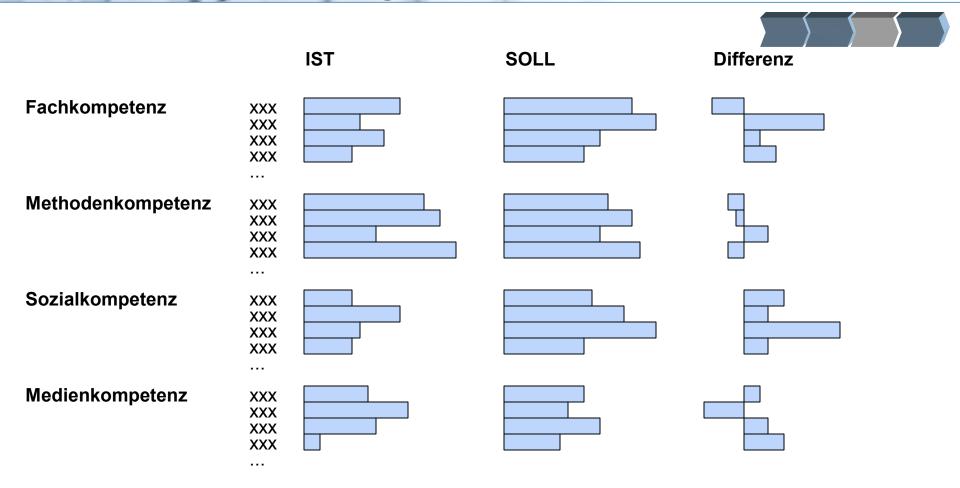
- Um die Zuordnung von Personen zu den einzelnen Aktivitäten im Entwicklungsprozess flexibel zu halten, lassen sich sogenannte Rollenkonzepte einsetzen.
- Ein Mitarbeiter kann dabei mehrere Rollen übernehmen, gleichzeitig kann auch eine Rolle von mehreren Mitarbeitern übernommen werden.

Institut für Informatik Betriebliche Informationssysteme

Rollenkonzepte: Matrixform

A ausführendM mitwirkendB beratend	Disponent	EDV-Koordinator	EDV-Assistenz	Erfasskraft	Fachabteilungsleiter	Foto-Laborant	Fuhrparkmanager	Hotline-Agent	Kaufm. Sachbearbeiter	Prüfingenieur	Prüfmittelverwalter	Kunde
Terminvereinbarung mit Kunden												М
Routenplanung												
Reservierung Dienstwagen							М					
Auswahl Prüfingenieur					В							
Zusammenstellung Prüfgeräte										Α	М	
Zusammenstellung Prüfformulare				М						Α	М	
Fahrt zum Kunden										Α		

Institut für Informatik
Betriebliche Informationssysteme


Aufbau einer Rollenbeschreibung

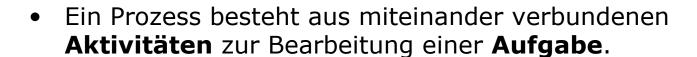
- verständlicher Name
- Beschreibung der Aktivitäten
- Dokumentation der notwendigen Kompetenzen:
 - Fachkompetenz
 - Methodenkompetenz
 - Sozialkompetenz
 - Medienkompetenz
- Beziehungen zu anderen Rollen

Auswahl und Qualifizierung von Mitarbeitern

Institut für Informatik Betriebliche Informationssysteme

Institut für Informatik
Betriebliche Informationssysteme

Nutzen von Rollenbeschreibungen



- Erleichterung der Personalplanung
- Festlegen von Verantwortlichkeiten, Aufgaben und Ergebnissen
- Ressourcen-Engpässe können früher erkannt werden
- Unterstützung bei der Rekrutierung und Qualifizierung
- Abgrenzung der Kompetenzen ist klar definiert
- Teamstrukturen und -abläufe werden entwickelbar

Mitarbeitersicht

- Transparenz der Tätigkeiten und Ergebnisse
- Transparenz des Rekrutierungs- und Qualifizierungsbedarfs
- Transparenz der Rollen und der Vernetzung der Rollen
- Grundlage für Personalentwicklungsmaßnahmen

Prozessmodelle: Definition und Motivation

- Das Prozessmodell definiert alle zur Erbringung der Dienstleistung notwendigen Prozesse
- die Optimierungsmöglichkeiten im Service Engineering liegen auch bei der organisatorischen Gestaltung der Unternehmensabläufe

Institut für Informatik
Betriebliche Informationssysteme

Vorgehensmodelle

- Vorgehensmodelle bzw. Prozessmodelle definieren den Ablauf des Softwareentwicklungsprozesses
- im Software-Engineering sind bereits viele Vorgehensmodelle entwickelt, getestet und standardisiert worden
 - Übertragung auf Service Engineering ist sinnvoll
 - Reihenfolge des Arbeitsablaufs,
 - jeweils durchzuführende Aktivitäten,
 - Definition der Teilprodukte einschließlich Layout und Inhalt,
 - Fertigstellungskriterien,
 - notwendige Mitarbeiterqualifikation,
 - Verantwortlichkeiten und Kompetenzen,
 - anzuwendende Standards, Richtlinien, Methoden und Werkzeuge.

Prozess-Modell legt fest ...

Vorgehensmodelle im Software Engineering

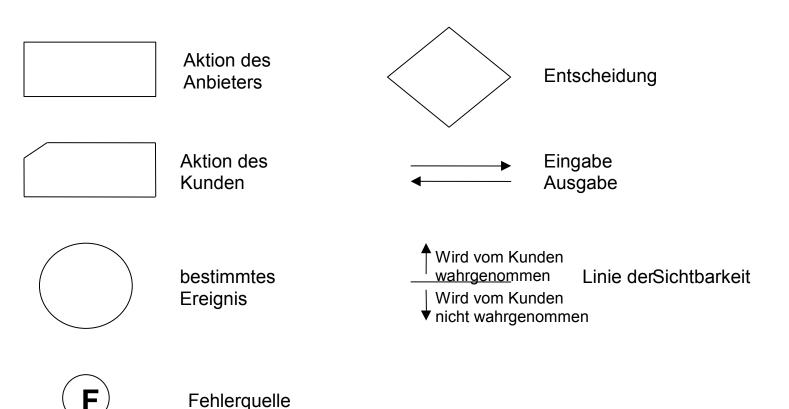
Prozessmodell	Primäres Ziel	Antreibendes Moment	Benutzerbe- teiligung	Charakteristika
V-Modell	max. Qualität	Dokumente	gering	sequentiell, volle Breite, Validation, Verifikation
Prototypen- Modell	Risikominimie- rung	Code	hoch	nur Teilsysteme
Inkrementelles Modell	min. Ent- wicklungszeit und Risiko	Code	mittel	volle Definition, dann zunächst nur Kernsystem
OO-Modell	Zeit und Kosten- minimierung	wiederver- wendbare Komponenten	?	volle Breite in Abh. von WV- Komponenten
Spiralmodell	Risikominimie- rung		mittel	Entscheidung pro Zyklus über weiteres Vorgehen

Service Blueprinting

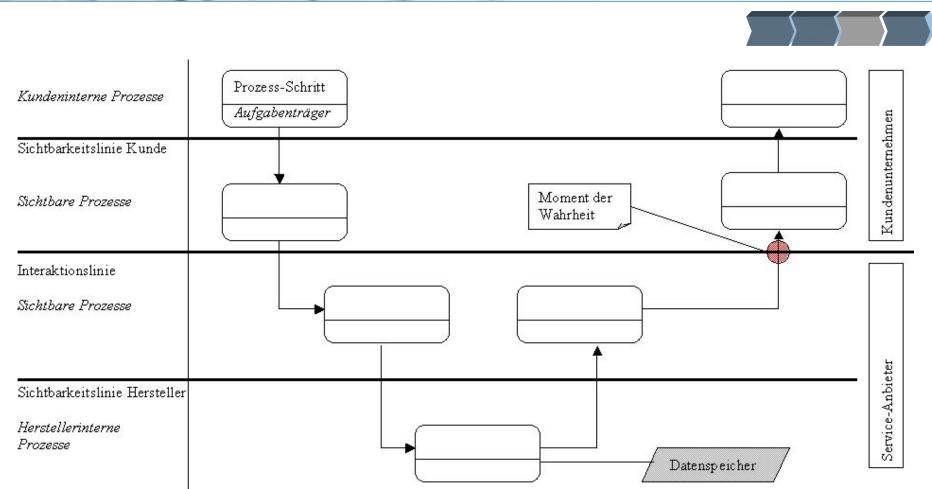
- Ein Service Blueprint (englisch »Blaupause«) ist eine <u>Prozessdarstellung</u> (in Form eines Ablaufdiagramms) einer Dienstleistung. Das Erarbeiten und Aufzeichnen eines Blueprint nennt man Blueprinting.
- wichtige Grundlage ist die Betrachtung der Dienstleistung aus Kundensicht
- es wird klar zwischen Kundenaktionen und Unternehmensaktionen unterschieden
- Vorteile:
 - detaillierte und transparente Aufzeichnung der Arbeitsabläufe zur Erbringung der Dienstleistung
 - mögliche Fehler und die wichtigsten Entscheidungssituationen können mit modelliert werden
 - objektive und qualifizierbare Aussagen werden ermöglicht
 - Einbeziehung der Kundenaktivitäten und Kundenperspektive
 - Herausstellen der "Momente der Wahrheit"

Institut für Informatik
Betriebliche Informationssysteme

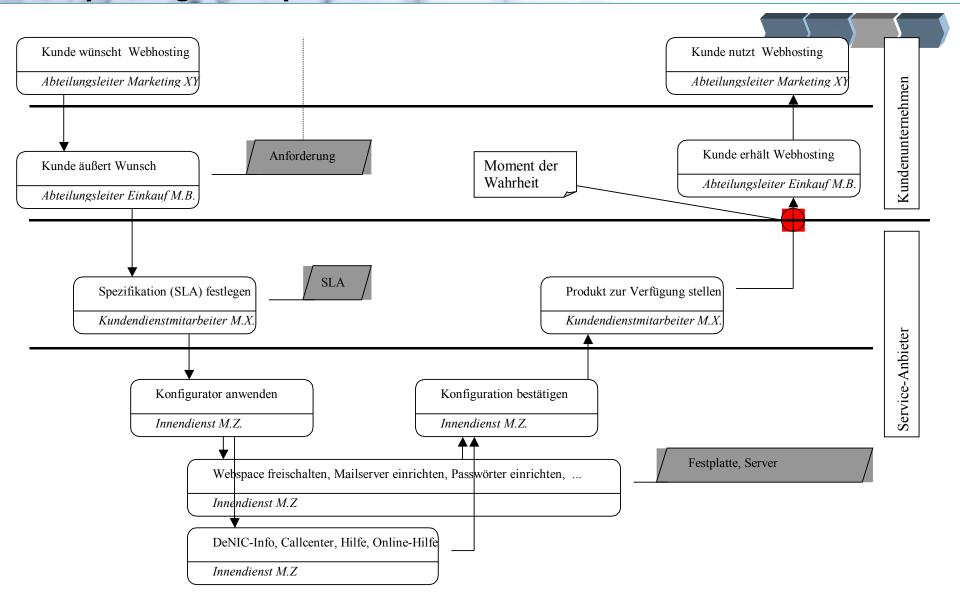
Service Blueprinting (2)


- Suche nach Fehlerquellen, Problemstellen, Schwachpunkte
- ergänzende Analysen, wie Zeitrahmen, Bewegungsstudien, etc.
- meist mangelnde Übersicht durch hohe Komplexität, daher werden Sichtbarkeitslinien verwendet
- wesentliches Instrument, um
 - Prozess-Evidenz für den Kunden erhöhen
 - Rollenklarheit gewährleisten
- Ziel:
 - zukünftige Dienstleistungen (Produkt, Prozess) detailliert planen – in Zusammenarbeit mit dem Kunden

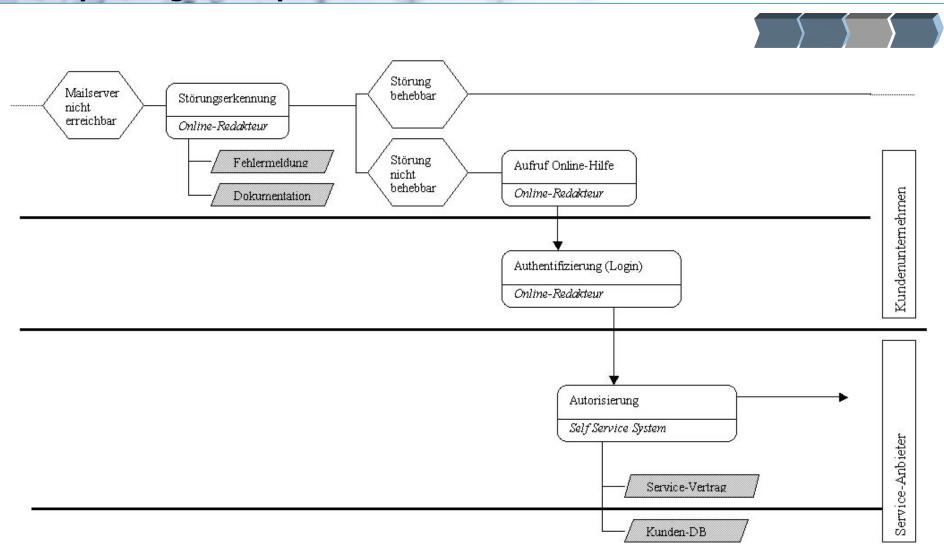
Institut für Informatik
Betriebliche Informationssysteme


Service Blueprinting - Konventionen

Symbole des Service Blueprinting:



Blueprinting-Schema Institut für Informatik
Betriebliche Informationssysteme


Institut für Informatik Betriebliche Informationssysteme

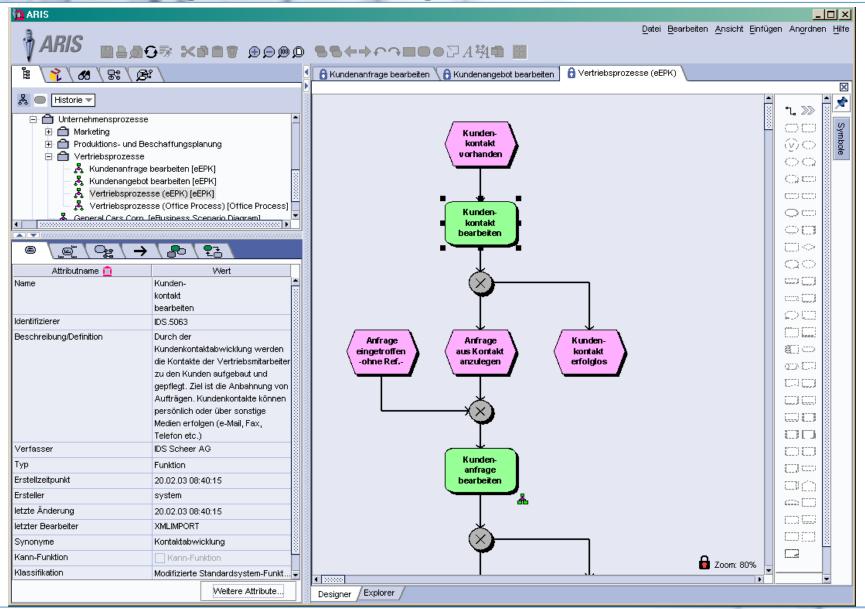
Blueprinting - Beispiel

Institut für Informatik
Betriebliche Informationssysteme

Blueprinting - Beispiel

Kundeninteraktion (Ausblick)

- durch das Service Blueprinting wird die Interaktion mit dem Kunden und innerhalb des Unternehmens zu einem der zentralen Punkte
- das zentrale Vorgehen zur Modellierung der Interaktionen ist
 - Identifikation von Interaktionen (z.B. durch entsprechendes Blueprinting, Kontextdiagramme, ...)
 - falls nötig, Verfeinern des Prozessmodells
 - Kooperationspartner zu identifizieren und klassifizieren
 - Auswahl einer geeigneten Kommunikationsmethode und Erstellen bzw. Auswählen eines Kommunikationsprotokolls
- in der Regel sind unternehmensinterne Interaktionen einfacher aufzulösen, wenn entsprechende Vorkehrungen (Planung!) getroffen wurden
- mehr in Vorlesung "Kundenintegration und Kundenmanagement"


Prozessmodellierung mit eEPKs

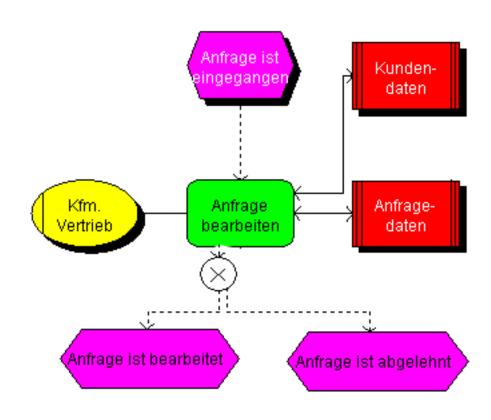
- Ereignisgesteuerte Prozessketten (EPKs)
 - 1992 von Prof. Scheer entwickelt
 - basieren im Wesentlichen auf der Petri-Netz-Theorie
- Wegen des Fehlens von Bezügen zur Daten- und Organisationssicht Weiterentwicklung der EPKs zu erweiterten ereignisgesteuerten Prozessketten (eEPKs).
- Mit Hilfe von (e)EPKs wird die Ablauforganisation von Unternehmen dargestellt, d. h., die Darstellung der Verbindungen zwischen den Objekten der Daten-, Funktions- und Organisationssicht und demzufolge die Darstellung von Prozessen.

Softwarewerkzeug: ARIS

 ARIS bietet eine einheitliche Methode, die sämtliche Aspekte der Leistungserstellung berücksichtigt und integriert. Das ARIS-Haus dient dabei als Bezugsrahmen und ermöglicht die verschiedenen Perspektiven von Dienstleistungen (Potenzial, Prozess, Ergebnis) modellbasiert zu vereinen.

eEPK-Werkzeug: ARIS Web Designer

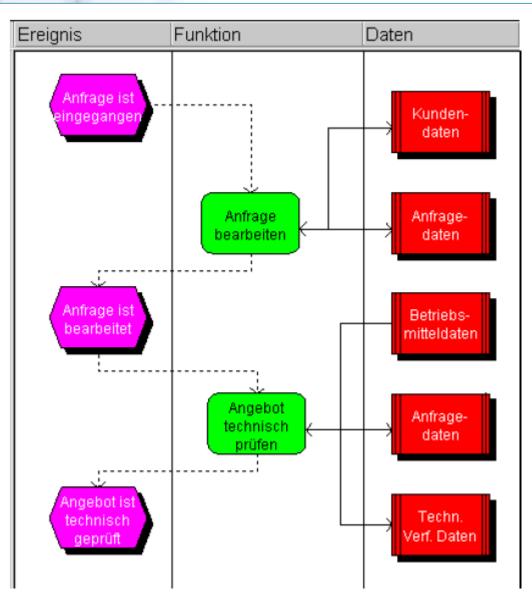
Institut für Informatik
Betriebliche Informationssysteme


Modellierungselemente einer eEPK

- Funktionen
 - aktive, zeitverbrauchende Komponente
 - generieren Ereignisse
- Ereignisse
 - passive, zeitpunktbezogene Komponente
 - lösen Funktionen aus
- Verknüpfungsoperatoren
 - stellen eine logische Verknüpfung zwischen Ereignissen und Funktionen dar
- Kontrollfluss
 - stellt zeitlich logische Abhängigkeiten zwischen den Komponenten Ereignis und Funktion her
- Zusätzliche Modellierungselemente
 - Informations-, Material-, Ressourcenobjekte
 - Dokumente, Dateien
 - Organisationseinheiten
 - Anwendungssysteme
 - ...

Institut für Informatik Betriebliche Informationssysteme

eEPKs: Ein einfaches Beispiel



VKD in ARIS

Institut für Informatik
Betriebliche Informationssysteme


VKD (Vorgangskettendiagramm)

- Erfasst die gleiche Sachverhalte als eine eEPK
- Die Objekte von gleichen Typen sind jedoch spaltenweise angeordnet
- Erhöht die Übersichtigkeit der Modellen

Rahmenwerk DL-Modell

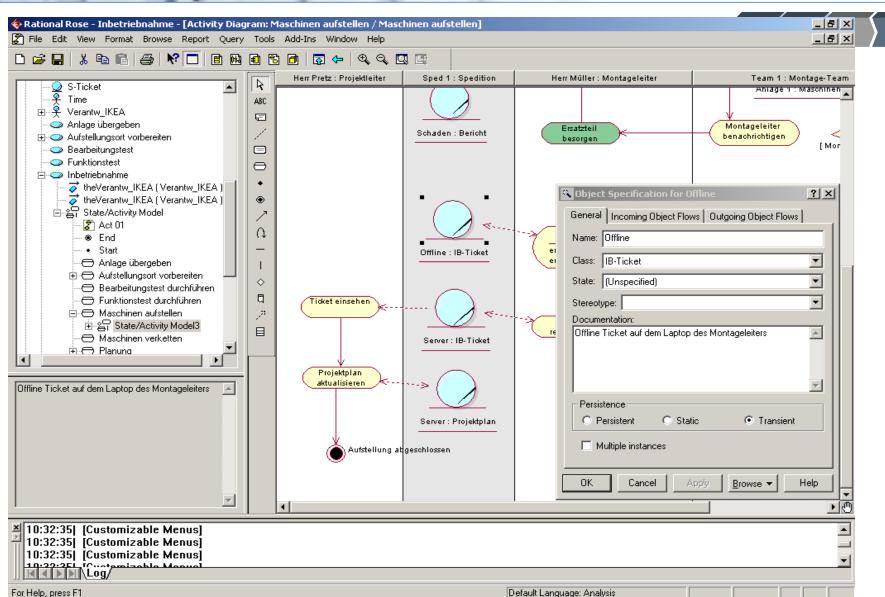
Institut für Informatik
Betriebliche Informationssysteme

Rahmenwerk zur Dienstleistungsmodellierung (Quelle: Grieble/Klein/Scheer)

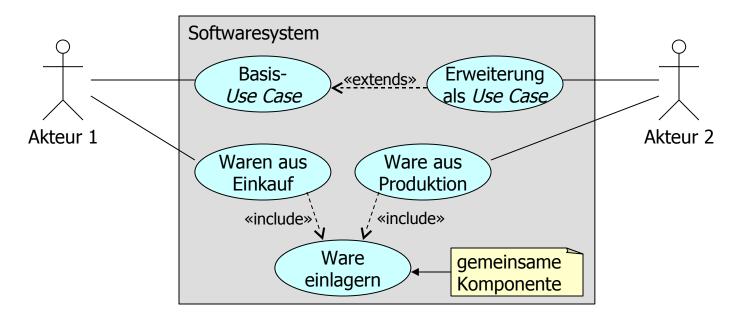
Institut für Informatik
Betriebliche Informationssysteme

ARIS-Methode, Zusammenfassung

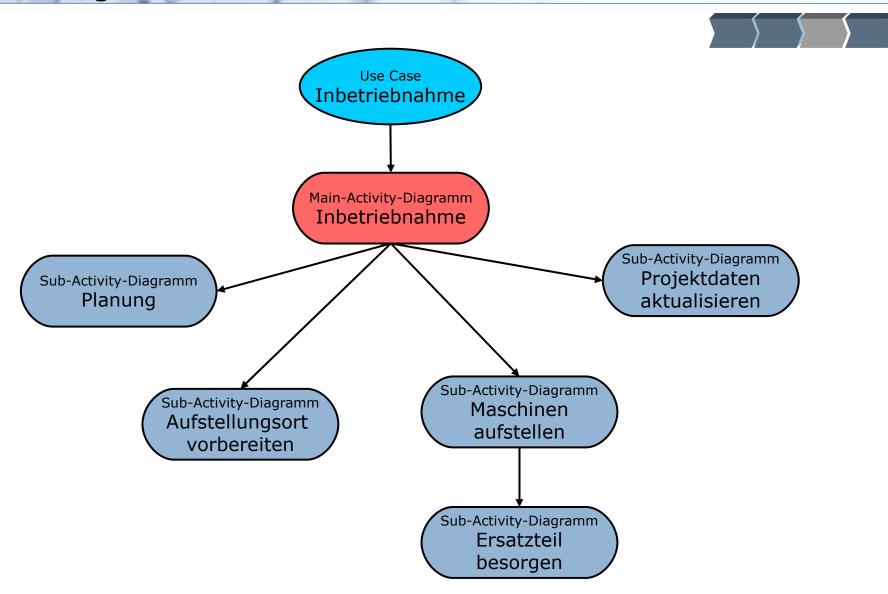
- Merkmale der Modellierung in ARIS:
 - Viele Modell- und Objekttypen
 - Modellübergreifende Objekttypen und Beziehungstypen
 - Keine lose Grafik, Symbole sind immer semantisch hinterlegt
 - Anpassbarer Detaillierungsgrad auf jeder Ebene.
 - Ambition alle wichtigen Unternehmensabläufe erfassbar zu machen (Zeitplanung, Arbeitskräfte (Organigramm, Schichtkalender), Finanzplanung (Kostenartendiagramm), Markt (Wettbewerbskräftemodell), Materialwirtschaft, Lager, ...)
 - Die verschiedenen Modelltypen stellen lediglich verschiedene Ansichten, die in der Firmen-Soll- und Ist-Realität interessant sein könnten.
- Geeignet für Business Reengineering, Prozessmodellierung, z.T.
 Systementwurf


Institut für Informatik
Betriebliche Informationssysteme

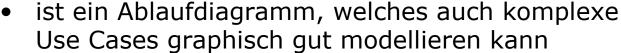
Prozessmodellierung in UML

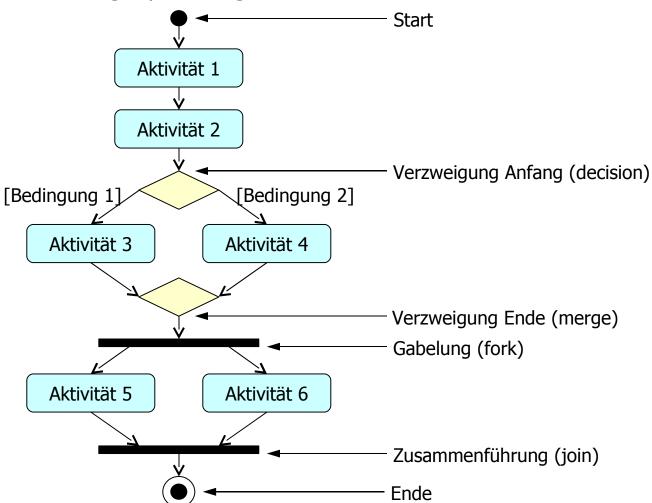

- graphische Modellierungssprache zur objektorientierten Modellierung eines zu entwickelnden Anwendungssystems beliebiger Komplexität
- beschreibt:
 - Systemzweck
 - Anwendungsfall-Diagramm (Use Case)
 - statische Systemstruktur
 - ° Klassendiagramm
 - Paketdiagramm
 - Verteilungsdiagramm
 - dynamisches Systemverhalten
 - Interaktionsdiagramme
 - Sequenzdiagramm
 - Kollaborationsdiagramm
 - ° Zustandsdiagramm
 - Aktivitätsdiagramm

UML-Werkzeug: Rational Rose



UML: Use Case-Diagramm


- beschreibt die Funktionalität eines (Software-)Systems, die ein Akteur ausführen muss, um ein gewünschtes Ergebnis zu erhalten / Ziel zu erreichen
- geben auf hohem Abstraktionsniveau einen guten Überblick über System und Schnittstellen
- Use Cases ermöglichen es, mit künftigen Benutzern ohne Details über das System zu sprechen
- Akteure sind Benutzer (Personen / automatisierte Systeme), die außerhalb des Systems stehen



UML: Diagrammhierachie

Beispiel: Aktivitätsdiagramm

UML-Methode, Zusammenfassng

- Kommunikation und Produktivität von Entwicklern im objektorientierten Umfeld zu ermöglichen und zu verbessern
- eingesetzt in allen Bereiche der Software- und Systementwicklung
 -> da Programme wie Rational Rose angefertigte UML-Diagramme analysieren können und daraus z.B. für die Implementation Methodenrümpfe generieren können
- Zur Modellierung mit UML stehen eine Vielzahl von Diagrammtypen zur Verfügung, z.B.:
 - das Anwendungsfalldiagramm (Use Case diagram)
 - das Aktivitätsdiagramm (Activity diagram)
 - das Sequenzdiagramm (Sequence diagram)
- Es fehlt bei UML eine Unterstützung für z.B. folgende Aufgaben:
 - Zeitplanung
 - Ressourcenplanung (ERP Enterprise Ressource Planning)
 - Geschäftsprozessmodellierung (vor allem bei umfangreichen Geschäftsprozessen)

Institut für Informatik
Betriebliche Informationssysteme

Prozessmodellierungstools

- CASE-Tools
 - ARIS-Familie (IDS Scheer)
 - EasyER (Evergreen) or (Visible)
 - Object Team (Cayenne)
 - ObjecTime Developer (ObjecTime)
 - Rhapsody (i-Logix)
 - Rose (Rational Soft.)
 - SA/Object Architect (Popkin)
 - SELECT Enterprise (Select)
 - StP/UML (Aonix)
 - Visual CASE (Stingray)
 - Visual Thought (Confluent)
- Entwicklungsumgebungen
 - Together/J (OI soft)
 - Together/Professional (OI soft)
- Drawing Tools
 - MagicDraw UML (No Magic)
 - UML v1.1a Template for Visio (Navision)

Quelle: http://sunsite.nus.edu.sg/pub/cetus/oo_uml.html; 04/2004