
1

Multhreading in games

Qingli Liu

2

Multithreading in Games

� Motivation

� Introduction

� Multithreading strategies and principles in
games

� Implementation of multithreading

� Performance of multithreading

� Summary

3

Motivation

� Why should you thread your games ?
� Technical reasons

Ñ Parallelism is the future of CPU architectures -> easy to scale (HT,
multi-core, etc)

Ñ Do other things while waiting for the graphics card/driver

Ñ Good MT design scales, and prevents repeated re-writes

� Business reasons

Ñ Differentiate yourself in a competitive landscape

Ñ All PC platforms will support Multi-threading

Ñ Parallel programming education will pay off with multiple platforms
(PC, consoles, server, etc)

Ñ MT scales more -> extends product lifetime

4

Introduction - Hyper-Threading Technology

Physical Physical

processorsprocessors
Logical processors Logical processors

visible to OSvisible to OS
Physical processor Physical processor

resource allocationresource allocation ThroughputThroughput

TimeTime

Resource 1Resource 1

Resource 2Resource 2

Resource 3Resource 3

Thread 2Thread 2 Thread 1

W
it

h
o

u
t

H
y
p

e
r

W
it

h
o

u
t

H
y
p

e
r --

T
h

re
a
d

in
g

T
h

re
a
d

in
g

W
it

h
 H

y
p

e
r

W
it

h
 H

y
p

e
r --

T
h

re
a
d

in
g

T
h

re
a
d

in
g

Thread 2
Thread 2

Thread 1 Resource 1Resource 1

Resource 2Resource 2

Resource 3Resource 3

+

Higher resource utilization, higher output
with two simultaneous threads

Higher resource utilization, higher output
with two simultaneous threads

5

Introduction - Multiprocessing

� Multiprocessing systems have multiple processors running at the
same time. Traditional multiprocessing systems have anywhere
from 2 to about 128 processors. Beyond that number (and this
upper limit keeps rising) multiprocessing systems become parallel
processors.

� Multiprocessing systems allow different threads to run on different
processors. This capability considerably accelerates program
performance.

� Now two threads can run more or less independently of each other
without requiring thread switches to get at the resources of the
processor. Multiprocessor operating systems are themselves
multithreaded and they too generate threads that can run on the
separate processors to best advantage.

6

Multithreading strategiey in games

� Utilize Data Parallelism

� Process disjoint data simultaneously

� Utilize Task Parallelism

� Process disjoint tasks simultaneously

� Choose task-level or data-parallel
threading for various parts of an
application

7

Game’s Pipeline Model

Render
World

Update
World

World
Data

World
Data

d
a
ta
 d
e
p
e
n
d
e
n
c
y

8

Data Parallelism in Games

� Threading a single function to operate on two
or more blocks of data at the same time.

� Execute tasks on secondary thread

� Audio processing

� Networking (including VoIP)

� Particle Systems and other graphics effects

� Physics, AI

� Content (speculative) loading & unpacking

� Multithread Procedural Content creation

� Geometry, Textures, Environment, etc…

� Threading Potential

� Good for CPU bound games

� Easy to implement

Render
World

UpdW
Thrd
2

Subset
2

Subset
2

UpdW
Thrd
1

Subset
1

Subset
1

9

Task Parallelism in Games

� Has to do with placing different
functional blocks of code on
separate threads in order to take
advantage of parallelism.

� Thread steps

� Determine Functional Blocks

� block flow diagram

� Determine Dependencies Between
Blocks

� determine whether a grouping
of data should be duplicated
or whether access to it should

be synchronized

10

Task Parallelism in Games

� Multithread whole 3D
Graphics Pipeline

� Thread 1 = Render
Frame (n)

� Thread 2 = Update
Frame (n+1)

� Threading potential

� Good for GPU bound games

� Difficult to implement due
to dependencies, but not
impossible

Render
World
Thread

Update
World
Thread

World
t = (n+1)

World
t = (n+1)

World
t = n

World
t = n

11

Implementation of Threading for Data Parallelism

� Apply threading to Data
Parallelism

� multiple threads need
to be assigned to
perform the same
functionality on
different data.

� OpenMP is

recommended

#include <stdio.h>
#include <omp.h>
int numIterations = 1000000;
int main()
{
double x, pi, sum=0.0, step;
step = 1./(double)num_steps;
for (int i=1; i < numIterations; i++)
{
x = (i - .5)*step;
sum = sum + 4.0/(1.+ x*x);

}
pi = sum*step;
return 0;

}

12

Implementation of Threading for Task Parallelism

� Apply threading to Task
Parallelism

� the roles of different threads are
defined by having different
functionality (as opposed to
identical functionality that is
applied to different data).

� Use thread pools to manage the
threading aspect of the problem
and distribute the available tasks
among the inactive threads.

� Explicit threading is the
recommended solution

� Thread pool
� Also as know as a task or work

queue

� Threads are only created once,
put to sleep when not used

13

� API / Library
� Win32* threading API

� P-threads

� Programming language
� Java*

� Programming language
extension
� OpenMP™

My_thrd_func(void* params)

{

begin, end <- params

for(i=begin;i<end; i++) {

a[i] = b[i] * sqrt(c[i]);

}

}

// Win32

handle =

CreateThread(NULL,0,my_thrd_func,

param,0,NULL);

// java

Thread myThread = new MyThreadClass();

myThread.run();

// OpenMP

#pragma parallel for

for(i=0; i<max;i++){

a[i] = b[i] * sqrt(c[i]);

}

14

Case Study Lego/Argonaut Bionicle

� Bioncle is a third person action

game

� Bioncle tasks were run on
different threads.

� The main thread was for
Update World and rendering.

� A worker thread was spawned
to handle Update Sky.

� File Read and Decompress in
Second thread

15

CThread

….

Public Interface

PostMsg

ReceiveMsg

Private

Construct

Start, Stop

msg queues

CThread

CThreadManager

CreateThread

DestroyThread

� Problem: Need a
Threading system that is
easy to use, object oriented
and cross platform

� Solution: Roll our own
Thread classes and
message passing model.
� Pros: Max flexibility, full

control, and platform
indep.

� Cons: Harder up front, less
supporting tools

� CThreadManager
� Controls lifetime

� CThread
� Win32

16

� CThread and CThreadManager encapsulated multi-threading details:
synchronization, creation, destruction

� Procedural sky effect easy to add

� Threading streamed IO reduces code complexity.

17

Performance of Multithreading

� Bad Multithreading is worse than no Multithreading

� Amdahl's Law

Speedupoverall = Overall speedup of application/workload
with enhanced sections of code.

Fractionenhanced = Portion of code that has been enhanced
or made parallel. (0.0 <= Fractionenhanced <= 1.0)

18

� Apply Amdahl's Law to Single-processor (UP) system, Hyper-
Threading Technology system (e.g. Speedupenhanced=1.3) , Dual-
processor (DP) system (e.g. Speedupenhanced=2)

� Use performance anylyser tool e.g. Intel® VTune™ Performance
Analyzer

� Profile the game early and often

� Helps build an incremental view of performance

19

Summary

� Thread your Game – it can be done!

� As the number of processors in desktop systems

increases, threading will grow more and more important

� Start multithreading as early as possible, ideally in code
design stage

� Choosing the right threading method minimizes the
amount of time spent modifying, debugging, and tuning
threaded code.

� Save time – Use Threading Tools to maximize threaded
performance

