

1

An Integration Life Cycle for Semantic Web Services Composition

Muhammad Ahtisham Aslam1, Jun Shen2, Sören Auer 1, Michael Herrmann3

1Betriebliche Informationsysteme, Universität Leipzig, Germany
{aslam,auer}@informatik.uni-leipzig.de

2School of Information Systems and Technology
Faculty of Informatics, University of Wollongong, Australia

jshen@uow.edu.au
3DaimlerChrysler AG, Sindelfingen Germany
michael.hm.herrmann@daimlerchrysler.com

Abstract

Business applications are more and more often devel-

oped on the basis of Web services. The aim is to provide
platform independence and loose coupling between busi-
ness applications to facilitate distributed and grid com-
puting scenarios. However, most efforts to deploy and
publish Web services are manual. Manual discovery, in-
vocation and composition of Web services in a distributed
computing environment significantly hamper the auto-
matic process of enterprise application integration. Se-
mantic enhancements in Web services aim at making the
process of Web services discovery, invocation and com-
position dynamic by exposing the machine understandable
description of Web service capabilities and Web service
requests. In this paper we compare recent dynamic Web
service composition approaches. We highlight some dy-
namic composition issues and compare existing ap-
proaches with respect to these issues. Based on these
findings we present a new and generic semantic Web ser-
vices integration and composition lifecycle to facilitate the
semantic based integration and composition of Grid ser-
vices. The proposed semantic Web services integration and
composition life cycle explains the necessary integration
phases beginning with the modeling and developing of
processes as Web service composition and ending with
their execution. With this lifecycle, integration hurdles
among different service composition approaches will be
diminished.

Keywords: Semantic Grid, Service Composition,
E-service Framework, System Design

1. Introduction

Grid technology provides an information infrastructure
for sharing and coordinating between different scientific
and engineering design resources (such as services) in the
emergent and supposedly ubiquitous Web services envi-
ronment. Semantic enhancements in Web services make it
more attractive for grid and distributed computing to lev-
erage existing work from business and scientific environ-
ments. The successful adoption of semantic Web services

(SWSs) in Grid scenarios depends on how efficiently Web
services address issues like dynamic discovery, invocation
and composition. To tackle these issues, semantic
enhancements in Web services are proposed. Three major
efforts (i.e. OWL-S [11], WSMO [15] and WSDL-S [13])
are currently going on to add semantics to Web services.
The SWS community has presented different solutions (as
discussed in Section 2) for dynamic and automated com-
position and integration of Web services by using these
SWS languages. Unfortunately, none of these approaches
fully addresses dynamic composition issues. Some major
challenges in semantic based integration and composition
of Web services are:

• With a growing number of services, manual discovery

and composition is an inefficient and non-flexible ap-
proach.

• Design time composition is not able to handle services,
which change on the fly.

• Static binding of Web services result in the failure of a
composition task, already when a single service within
the composition is not accessible on the network.

• Syntax based composition prevents to dynamically
discover and compose alternate services, which per-
form the same task.

Traditional Web services (WSDL services) provide

syntactical interfaces and UDDI registries support only
index word based searching of required services. Web
services and SOA need to be semantically enhanced to
support the Web service integration process in a machine
understandable way. Also, a generic methodology is
needed to integrate business applications (rendered as
services) and express business rules and logic in a more
flexible way that is understandable for computer agents.

Business logic can be modeled by using different
process modeling techniques. For example, a value gener-
ating business system can be defined as a composition of
value-generating activities in a Value Chain Diagram [2].
The Event Driven Process Chain [10] [7] is another way to
compose methods. We can structure the control flow of a
business process as a chain of events and functions by using
EPC diagrams. At the same time Activity Diagrams [7] can
also be used to model business processes and to implement
the logic of a business process. But in the rapidly growing
service oriented world an executable orchestration lan-

2

guage like BPEL or the OWL-S Process Model ontology is
more useful to model business processes as composition of
Web services. Such an orchestration language can define
control and data flow between Web services and implement
business rules, logic and technical details of a business
process.

As an example from automobile industry we consider a
scheduled business process, called, “planning and execu-
tion” which, calculates the daily production of gears. Gears
and engines are a part of the assembly process in order to
build a car. The “planning and execution” process opti-
mizes the production of gears restricted (e.g. by capacity of
production). Gears and cars are not linked by type series. In
fact, a class of gears matches to a class of cars. Enriching
process steps with semantic annotations promises a bet-
ter-optimized production plan.

Academia and industry have made large efforts on SWS
and related issues. A drawback of the ongoing work is that
all these efforts are being done on individual platforms. It is
needed to synchronize these efforts to make SWS func-
tional. For this purpose a life cycle for SWS integration is
needed. Its goal should be to combine the SWS integration
efforts, starting with the design and, stepping through the
phases publishing, discovery, invocation, composition, and
finally resulting in the service execution.

The remaining paper is organized as follows: Section 2
provides recent research efforts and existing approaches for
semantic based discovery and composition of Web services.
In Section 3 we highlight some challenges and dynamic
composition issues and compare existing approaches with
respect to these issues. In Section 4 we provide a SWS
integration and composition life cycle to bring these SWS
efforts in one circle. Section 5 concludes our work with a
short discussion and a perspective on future work.

2. Existing SWS Efforts and Composition
Approaches

2.1. Existing SWS Efforts

Business Process Execution Language for Web Services
(BPEL4WS (BPEL)) [1] is the language that can be used to
define the composition and orchestration of multiple Web
services. It provides a rich vocabulary in the shape of
primitive and structured activities for expressing the be-
haviour of business processes. WSDL services can be used
to expose operations of applications but they don’t handle
integration aspects. Integration of Web services within and
across enterprises needs definition and collaboration ac-
tivities and data exchange between Web services. Such
collaboration can be modelled as a process by composing
different Web services with defined control flow and data
flow. Interaction between Web services within a BPEL
process model can be synchronous or asynchronous.

The Web Ontology Language for Services (OWL-S) [11]
is a set of markup language constructs that can be used to
define properties and capabilities of Web services in
computer understandable way. It aims at providing an
ontological description of Web services to facilitate dy-
namic and automated discovery, invocation and composi-

tion of Web services. OWL-S provides Web service se-
mantics by ontologically annotating: (1) the input required
by a service (as shown in the sample code below), (2) the
output generated by a service, (3) pre-conditions that need
to hold to perform a service and (4) effects that the service
will produce after its execution. OWL-S is a suite of OWL
ontologies (Profile, Process Model and Grounding on-
tologies). The Process Model ontology can be used to
model the composition of SWSs by defining the control
flow and data flow on the basis of matching semantics of
sub processes.

<process:Input rdf:ID="CarRequest">
 <process:parameterType rdf:datatype="&xsd;#anyURI">
 &bibtex;#Roadster</process:parameterType>
 <rdfs:label>Roadster is a type of car.</rdfs:label>
</process:Output>

Meanwhile, WSDL-S [13] is also a candidate language
for SWS. Instead of defining separate ontologies to provide
service semantics, the WSDL-S approach extends tags of
the existing Web services description language (WSDL). In
addition with annotating input/output messages, the
WSDL-S extensions enable the description of precondi-
tions and effects of a Web service operation. The sample
below gives an example of WSDL-S annotation of WSDL
message tag.

<wsdl:message name="CarRequest">
 <wsdl:part name="in0" type="tns1:TypesOfAvailableCars"

LSDISExt:onto-concept="LSDISOnt:Roadster"/>
</wsdl:message>

WSMO [15] is another initiative to develop specifica-
tions for SWSs. It has three approaches to model Web
services composition (i.e. state machine, structured and
data flow models). State-based model is some how related
to WSFL in which each state defines control flow to control
activities. Structured model is based on structured design
methodology and is used in workflow languages (e.g.
BPEL). Third model (i.e. Data flow model) is based on
parallel programming languages and is based on concurrent
control components of structured model.

All above efforts involve planning of Web services
composition. Algorithmically, a planning problem has as
input a set of possible courses of actions, a predictive
model for underlying dynamics, and a performance meas-
ure for evaluating courses of action.

2.2. Existing Composition Approaches

2.2.1. A Bottom-Up Approach. The work discussed in [3]
presents a bottom-up approach by integrating the semantic
Web technology into Web service technology while con-
sidering BPEL as a composition of Web services. Idea
behind this approach is to add semantics in BPEL that
provide machine understandable descriptions of required
services within process and extending workflow execution
engine (BPWS4J) to realize these semantic descriptions.
With these semantic descriptions the bottom-up approach
uses Semantic Discovery Service (SDS) to dynamically

3

discover a required service on the basis of matching se-
mantics and bind it within composition. In case, if a single
service does not meet a service requirements, the SDS uses
a recursive back-chaining algorithm to determine a se-
quence of service invocations or service chain, which takes
input provided by the BPWS4J and returns the output
required by the BPWS4J. However, the system efficiency
goes down as the number of service Profiles increases in
service chain. Another limitation of this approach is that it
doesn’t consider pre and post conditions for discovery and
composition purposes.

2.2.2. METEOR-S Approach. In the METEOR-S project
[12], the working group has developed a tool for dynamic
composition of Web services. The METEOR-S tool
(METEOR-S process designer) allows process designers to
design processes on the basis of business and process
constraints. Idea behind Web Services Composition Tool is
to write required service specifications as an abstract
process within BPEL process and to discover services
whose Profile matches to defined abstract process. Once
required services are discovered, candidate services are
selected on the basis of process and business constraints.
The process designer uses BPEL for process modeling. A
service template is created by using functional as well as
QoS specifications of all operations of a Web service in a
process [12]. Major drawback of this approach is that end
user has to manually select a service for composition
among bundle of dynamically discovered matching ser-
vices.

2.2.3. Template Based Composition: An AI approach.
In [5], Evren Sirin uses workflow templates to write ab-
stract activities. These abstract activities can be used to
describe required services. On the basis of these activities
specifications required services can be discovered to create
executable workflows. This approach focuses on value of
adding preferences in templates so that services can be
ranked to find most suitable one among a bundle of dis-
covered services. Evren Sirin proposes the use of semantic
Web technology (OWL) for writing such templates, which
allow reasoning for flexible and more consistent match
making of required services. This approach focuses on
extending the OWL-S process ontology by proposing the
addition of abstract process. Evren Sirin proposed that
process ontology should have an abstract process that can
be used to refer to the Profile ontology of an OWL-S ser-
vice with other specifications that can be used to rank and
find best suitable service. The proposed abstract process,
unlike to atomic process is not connected to specific Profile
or Grounding and unlike to simple process is not connected
to any existing process. This approach implements use of
AI planning approach (i.e. Hierarchical Task Network
(HTN) planning) with its extended formalism as
HTN-Description Logic (HTN-DL).

2.2.4. WSMO Composition Approach. WSMO commu-
nity has also developed a tool [4] for dynamic composition
of Web services and has integrated it with IRS-III [9]. The
composition tool allows users to select goals, mediators and

control flow operators to define control flow between
components. The composition process starts by selecting a
composition goal from the list of available goals defined in
the IRS-III server. Data flow between these goals can be
defined by specifying the data source as input of goal and
the data destination as an output of the goal. Type mismatch
between inputs and outputs of goals can be managed by
using mediators. Mediators map and perform transforma-
tion between goals. Defining XSL Transformations can
support such a data mapping between messages of different
types in OWL-S.

2.2.5. Automated Composition by Using SHOP2. The
work discussed in [6] describes how an AI planning system
(SHOP2) can be used with the DAML-S (OWL-S) Web
service description to automatically compose Web services.
This approach gives partial support for composing services
on the basis of their matching functional and non-functional
semantics. [6] Does not support the creation of a composite
process with all OWL-S supported control constructs (e.g.
this approach does not support synchronization between
process components by implementing support for OWL-S
Split-Join control construct).

2.2.6. SWORD. The method reported in [14] provides a set
of tools for composition of a class of Web services. The
SWORD implements use of rule-based expert system that
determines possibility of automatic creation of composite
service from existing services. In case of such possibility a
plan is created. Execution of such a plan generates com-
posite service. This approach is limited with respect to
selecting Web services for composition just on the basis of
input and output and does not handle services that have
certain pre-conditions or effects.

2.2.7. Plængine. Plængine [8] is a software system that
supports planning for service composition and service
enactment. The Plængine uses integrated meta-model ap-
proach to plan for Web services composition. The
Plængine consists of two components: a composer and an
enactor. The composer is responsible to generate compo-
sition with the help of its sub-component ComposerThread
that uses search-planning algorithm to perform composi-
tion. The enactor is responsible for scheduling and execu-
tion of individual services within a composition. This work
focuses on overcoming limitations (e.g. handling excep-
tions, sophisticated support for control flows and extending
architecture of meta-models).

3. Limitations of Existing Approaches

On the basis of major challenges and existing composi-
tion approaches (discussed in Sections 1 and 2 respectively)
we would summarize above approaches by compiling them
with their level of support for issues that need to be ad-
dressed for dynamic Web services composition. Some
major dynamic composition issues are:

Service Discovery and Selection on the basis of

matching Functional and Non-Functional Semantics: This

4

issue addresses the discovery of a service on the basis of
matching functional semantics (e.g. input, output, pre- and
post-conditions) and non-functional semantics (e.g. service
response time, geographical location etc.). It is also con-
cerned with selection of a single service from a bundle of
semantically discovered services.

Service Binding & Referencing: In case of a workflow

language as Web services composition, Service Binding &
Referencing describes that how a selected service is bound
in final composition. In case of an AI planning approach, it
describes how a service is referred in final composition
generated by an AI plan.

Composition Strategy: This employs the composition
approach used for SWS composition. For example in case
of a workflow language as Web services composition,
composition strategy describes that either composition is
dynamic or not. Or, in case of an AI planning approach
composition strategy describes that either the final com-
position is generated automatically (automatic) or
semi-automatically (semi-automatic).

Execution: This issue focuses on execution support for

the execution of final composition.

Semantic Web Technology: It concerns with approach

used to add semantics to Web service technology (e.g.
OWL-S, WSDL-S or WSMO etc.).

Table 1 summarizes capabilities and limitations of
above discussed approaches with respect to these SWS
composition issues. It shows that none of the above ap-
proaches address all of these composition issues. For ex-
ample in bottom-up approach (discussed in Section 2.2.1)
QoS semantics, pre and post conditions of services play no
role in discovery and composition mechanism. In this ap-
proach process designer handles pre and post conditions at
design time. Similarly, the approach discussed in Section
2.2.2 also defines basic workflow in BPEL and dynami-
cally discovered services are bound in the final process at
design time.

To discover and compose Web services in dynamic and
automated fashion, a composition approach should suc-
cessfully address all these issues. With such an approach
we can avoid problems that arise due to syntax based static
composition of Web services. For example, selecting and
composing required services dynamically and at run time
on the basis of both matching functional and non-functional
semantics can help to avoid problems that occur when a
single service within composition is not accessible, or when
its functional and non-functional semantics no longer
match to required service semantics.

Successful integration and composition of Web services

is needed to bring these Web services discovery, invocation
and composition efforts in one circle. For this purpose we
present a semantic based Web services integration and

 Service Discovery Service Selection

Partial

No

Partial

Yes

Run-time

Dynamic

Yes

OWL-S

Yes

Partial

Yes

Partial

Deploy-

ment/Design
time

Dynamic

Yes

WSDL-S

Partial

Partial

Partial

Partial

Dynamic

Automatic

Yes

OWL-S

WSMO

Approach

Yes

Partial

Yes

Partial

Dynamic

Semi-Autom

atic

Yes

WSMO

Partial

Partial

Partial

Partial

Dynamic

Automatic

Yes

OWL-S

SWORD

Partial

No

Partial

No

Off-line/
Composi-
tion time

Semi-autom

atic

Yes

Independent
of Standards

Plængine

Yes

No

Yes

No

Dynamic

Automatic

Yes

Integrated

Meta-Model

Functional
Semantics

Non-Functi
onal

Semantics
Functional
Semantics

Non-Functi
onal

Semantics

Semantic
Web

Technology
Execution

Service
Binding &

Referencing
Composition

Strategy

Bottom-up
Approach

HTN Plan-
ning using

SHOP2

METEOR-S

Template
Based

Composition

Composition
Approach

Table 1: Comparison of existing dynamic and automated Web services composition approaches.

5

composition life cycle that addresses dynamic composition
issues and challenges.

4. Semantic Web Services Integration Life
Cycle

The semantic Web services integration and composition
life cycle (Figure 1) describes an engineering and
development cycle to fully harness and sharpen the power
of SWS. The proposed life cycle is based on a top down
approach starting from modeling business processes as
Web services composition and ending with their execution.
It consist of multiple modules including developing
business processes, adding technical and business
constraints to processes, annotating the composition
workflow with domain ontologies to prepare semantic base
service requests in workflow and deploying and executing
the final process. Each phase of the SWS integration life
cycle is responsible to perform a specific task. We herein
discuss characteristics of these phases individually.

Business Process Modeling. Business departments define
how a single process steps are combined with each other
and control and data flow between these process steps –
business logic. In fact, they do not know the technical
aspects and implementation of these processes and how
Web services work, but they are able to design and model
the business logic. Different methods like Value Chain
Diagram, Event Driven Process Chains and UML Activity
Diagrams can be used to model a business process. These
methodologies are more useful for business experts to
describe business logic as business processes that are an-
notated with management requirements. Deliverables of
such business analysis and design processes are not read-
able for computers. They need some technical descrip
scriptions to become readable and executable by machines.

Development. Once defined, business processes are de-
veloped as a composition of Web services with their tech-
nical implementation. Technical descriptions of business

processes make them machine readable for the purpose of
deployment and execution. Machine-readable descriptions
of processes can also refer to some existing services
available in the service registry to perform a specific part of
the total business goal. Business constraints (e.g. business
rules, data exchange format, communication protocols etc.)
are applied to the business process to meet the management
aspects of integration process. Even though technical de-
scriptions of processes have been implemented to make
them executable for machines at this phase, but imple-
mentation of semantic descriptions of required services is
still needed for the purpose of dynamic discovery and
composition.

Semantics Enrichment of Workflow. Instead of binding
required services within composition at design-time
(development phase), required services can be described in
the process semantically. These semantic service requests
can be annotated with domain ontologies. Domain
ontologies are managed in the service management scope.
The final business process is a process defined in some
workflow language (e.g. OWL-S composite process or
BPEL4WS enriched with process semantics). The process
of preparing and sending a request for SWS, discovering a
service on the basis of matching semantics and getting its
response is dependent on semantic enhancements in the
participants (service provider, requester and registry) of
SOA.

Runtime Phase. Semantically enriched workflows can be
deployed on semantic enabled execution engines (i.e.
execution engines capable of understanding workflow
semantics). Execution engine is capable of invoking Web
services that are statically bond in the process during the
development phase of life cycle. Also, services define
semantically in the workflow are searched in the semantic

services registry. Services discovered on the basis of
matching semantics are bound in the workflow at run time.

Fig.1 The Semantic Web services integration life cycle.

6

Discovering a service just on the basis of matching func-
tional semantics (input, output) may not always acquire
right service, therefore a semantic service request with in
process should be defined on the basis of both functional
and non-functional semantics. At the end, the final process
as a composition of services is executed with defined con-
trol flow and data flow.

Service Management. As described before, the service
management phase is the always-on and helping phase
within the life cycle. Managers and developers can manage
the service publishing and serving requests for semantic
and syntax based Web services. Web services registries are
enhanced to SWSs registries for publishing and querying
SWSs. Domain ontologies are also managed in this phase.
These domain ontologies can be used to annotate Web
services and business processes to provide data semantics.
Business processes can be managed for the deployment and
execution in this phase as well. Service Management phase
helps to provide business constraints for modeling business
and technical perspectives of a Web services integration
scenario.

5. Conclusions and Future Work

In this paper we described a comparative study of recent
approaches for semantic based discovery and composition
of SWSs and highlighted limitations of these approaches
with respect to dynamic composition issues. We provided
an integration and composition life cycle that addresses
SWSs discovery and integration issues and attempts to
bring these efforts together. The proposed life cycle starts
with adding semantics to Web services and modeling
business goals as business processes. The paper discusses
how these processes could be annotated with business logic,
rules and constraints in some machine-readable workflow
language. We discussed the annotation of these processes
with domain ontologies to provide semantics of required
services in a defined workflow. Such a semantically an-
notated workflow can be deployed and executed by an
execution engine capable of understanding the process
semantics. The Web Services Description Language
(WSDL) does not support the specification of various
constraints, management statements, classes of service,
Service Level Agreement (SLAs) and other contracts and
protocols between Web services.

We are exploring these upcoming SWS languages and
composition approaches in our lab by concentrating on
their semantic capabilities and by implementing and
updating our business processes with semantics. The goal is
to annotate business processes and services that are already
hosted in our infrastructure in order to reuse them in a
dynamic and automated way.

Acknowledgment

This work is partially supported by the Higher

Education Commission (HEC) of Pakistan under the
scheme “Partial Support Scholarship for PhD Studies
Abroad”.

References
[1] Business Process Execution Language for Web Services
Version 1.1. 5th May 2003. [online] Available ftp://www6.
software.ibm.com/software/developer/library/ws-bpel.pdf
[2] C. Gray: Entrepreneurship, resistance to change and growth
in small firms. Journal of Small Business and Enterprise
Development, March 2002, ISSN 1462-6004, Volume 9, Issue 1,
pp.61-72.
[3] D. J. Mandell and S. A. McIlraith: Adapting BPEL4WS for
the Semantic Web: The Bottom-Up Approach to Web Service
Interoperations. In proceedings of the Second International
Semantic Conference, volume 2870 of LNCS, pages 227-247.
Springer, 2003.
[4] D. Sell, F. Hakimpour, J. Domingue, E. Motta and R. C. S.
Pacheco: Interactive Composition of WSMO-based Semantic
Web Services in IRS-III. Proceedings of the First AKT Workshop
on Semantic Web Services (AKT-SWS04) KMi, The Open
University, Milton Keynes, UK, December 8, 2004.
[5] E. Sirin, B. Parsia, and J. Hendler: Template-based
Composition of Semantic Web Services. In AAAI Fall
Symposium on Agents and the Semantic Web, Virginia, USA,
November 2005.
[6] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau: HTN
Planning for Web Service Composition using SHOP. Journal of
Web Semantics, 1(4): 377-396,2004.
[7] Ferdian: A Comparison of Event-driven Process Chains and
UML Activity Diagram for Denoting Business Processes (Master
Thesis).
[8] H. Meyer, H. Overdick, and M. Weske: Plængine: A System
for Automated Service Composition and Process Enactment.
Proceedings of WWW Service Composition with Semantic Web
Services, p. 3 - 12. University of Technology of Compiègne, 20.
[9] J. Domingue, L. Cabral, F. Hakimpour, D. Sell and E. Motta:
IRS-III. A platform and Infrastructure for Creating WSMO-based
Semantic Web Services. Proceedings of the Workshop on
WSMO Implementations (WIW 2004) Frankfurt, Germany,
September 29-30, 2004, ISSN 113-0073.
[10] J. Mendling, G. Neumann and M. Nüttgens: Yet Another
Event-Driven Process Chain. Proceedings of 3rd International
Conference on Business Process Management (BPM 2005), Nacy,
France, September 5-8, 2005, LNCS 3649, pp. 428-433.
[11] OWL-S: Semantic Markup for Web Services. [online]
Available http://www.daml.org/services/owl-s/1.2/overview/
[12] R. Aggarwal, K. Verma, J. Miller and Wilnor: Dynamic
Web Service Composition in METEOR-S. Technical Report,
LSDIS Lab, Computer Science Dep., UGA, May 2004.
[13] R. Akkiraju, J. Farell, J. A. Miller, M. Nagarajan, A. Sheth
and K. Verma : Web Service Semantics – WSDL-S [online]
Available http://www.w3.org/2005/04/FSWS/Submissions/17/
WSDL-S.htm.
[14] S. R. Ponnekanti and A. Fox: SWORD: A Developer
Toolkit for Web Service Composition. In Proceedings of the 11th
International World Wide Web Conference, WWW 2002,
Honolulu, Hawaii, May 7-11, 2002. ACM Press, 2002.
[15] Web Services Modeling Ontology [online] Available
http://www.wsmo.org

